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Abstract

Physics Reports 272 (1996) 61-137

Recent advances in the electromagnetics of composite materials are reviewed. In particular, linear and non-
linear optical properties of small-particle aggregates are considered. The effects of fractal morphology, such as
a localization of dipolar eigenmodes and large fluctuations of local fields, are analyzed. )
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1. Introduction

Electromagnetic phenomena in metal-insulator composites (thin films, cermets, colloidal aggregates,
etc.) have been intensively studied for the last two decades [1]. These media typically include small,
nm-sized, particles. anoﬁaoa,naa composites possess fascinating electromagnetic properties, which
differ greatly from those of ordinary bulk material, and they are likely to become ever more important
with the miniaturization of electronic and optoelectronic components.

Fractal -structures are prevalent in composites. The emergence of fractal geometry was a significant
breakthrough in the description of imregularity [2,3]. Fractal objects do not possess translational
invariance and, therefore, cannot transmit running waves [3,4]. Accordingly, dynamical excitations,
such as vibrational modes (fractons), tend to be localized in fractals [3-6]. Formally, this is a
consequence of the fact that plane running waves are not eigenfunctions of the operator of dilation
symmetry characterizing fractals. The efficiency of fractal structures in damping running waves is
probably the key to a “self-stabilization” of many of the fractals found in nature {3].

The number of particles in a fractal cluster of gyration radius R, is given by N = (R./R,)?, where
R, is a typical separation between nearest neighbors, and D is the fractal (Hausdorff) dimension,
which is, in general, fractional and less than the dimension of the embedding space d, ie. D < d.
Such a power-law dependence of N on R, implies a spatial scale invariance (self-similarity) for the
system. For the sake of brevity, we refer to fractal aggregates, or clusters, as fractals. Particle positions
in fractals are correlated so that the pair correlation function g(r) oc r?~4, where r is the distance
between two points in a cluster. This correlation makes fractals different from “truly” random systems
such as salt scattered on the top of a desk. Note that the correlation becomes constant, g(r) = const,
when D = d; this case corresponds to conventional media, such as crystals, gases, and liquids. The
unusual morphology associated with fractional dimension results in the unique physical properties of
fractals, including the localization of dynamical excitations indicated above.

Another important model used for the description of composites is percolation which is closely
related to the concept of fractals. Percolation represents probably the simplest example of a disordered
system. Consider a square lattice, where each site is occupied randomly with probability p (or empty
with probability 1 —p). Assume that occupied sites imply electrical conductors, empty sites represent
insulators, and that electrical current can flow only between nearest neighbor conductor sites. Then,
there is a critical (threshold) concentration p. above which the current can flow (percolate) from one
edge of the lattice to the other; this is so-called site percolation. When the bonds between the sites are
randomly occupied, we speak of bond percolation. The most common example of bond percolation
is a random resistor network, where the metallic wires in a regular network are cut randomly with
probability g = 1 — p. Again, there is a critical density g, = 1 — p, that separates a conductive phase
at low g from an insulating phase at large g. Perhaps, the most natural example of percolation is
continuum percolation, such as a sheet of conductive material with circular holes punched randomly
in it (Swiss cheese model). In contrast to site or bond percolation, in continuum percolation, the
positions of the two components of a random mixture (in this case, presence or absence of holes)
are not restricted to the discrete sites of a regular lattice.

In percolation, the concentration, p, plays a similar role as the temperature in thermal phase
transitions: long-range correlations control the percolation transition and the relevant quantities near
p. are described by power laws and critical exponents.

A percolation system can be thought of as a set of clusters (consisting of connected bonds). For
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p < p. only finite clusters exist; at p = p, there appears an infinite cluster. The mean size of the finite
clusters, for p below and above p,, is characterized by the correlation length £(~ R.) that increases
as £ ~ |p— p.|™ when p approaches p,. As was first pointed out by Stanley [7], these finite clusters
can be described as fractals for r < £. Thus, the number of sites (bonds) in the percolation clusters
isN~rPforr<éand N~ forr > €. . .

The main objective of this paper is to describe electromagnetic properties of small-particle com-
posites; we outline the main theoretical approaches and advances in this field. By “small particle” we
mean a particle whose size is much less than the wavelength A, so that the quasi-static approximation
can be used to describe the response of an individual particle. (Typically, the particle size ranges
from tens to hundreds of nanometers.) The particles are embedded in a host material and can be
aggregated (or not) into clusters. The size of a cluster, in general, can be arbitrary with respect to A.

The electromagnetic response can be described in terms of the complex dielectric function € = €'+
ie”, or complex conductivity o = o’/+ic™; these two quantities are related by the formula € = 4io/w.
If the particles in a cluster are conductive and connected, there is a flow of conducting electrons
(Ohmic current) through the system. There is also a dipolar response, which arises in Maxwell’s
equations through the displacement current. For a Drude metal, the Ohmic current dominates in the
low-frequency region (|e’] < €”), and the displacement current (dipolar response) dominates in the
high-frequency region, when |€'| > €”.

In the low-frequency region, percolation theory can be successfuily used to describe the dc and ac
conductivity. In particular, near the percolation threshold, scaling theory can be applied. We consider
briefly the basic concepts of ac conductivity theory for percolation.systems in Section 2.

In the high-frequency region, there is a non-compensated surface charge on small particles resulting
in their polarization (dipolar response) and, therefore, in alteration of the field acting on the particles.
One can associate with each particle a dipole moment d that “generates” a secondary field (o r=3in
the near zone). The dipole-dipole interaction (o< #~3) is long range for conventional three-dimensional
media. Thus, in the high-frequency range, there are strong dipolar interactions between particles in a
cluster and clusters. - )

The optical (dipolar) response of inhomogeneous media can often be successfully described using
various mean-field theories. We outline these theories and their application to determining optical
properties of composites in Section 3. : : )

A semi-phenomenological spectral representation that takes into account the presence of no__oo:‘\.o
dipolar modes (characterized by various depolarization factors) is considered in Section 4. This
theory, however, does not give, in general, a recipe for the calculation of mode strengths from first
principles. )

Spatial scaling that occurs for r < R. can dramatically affect the optical properties of fractal
clusters. In Section 5 we consider the scaling of optical properties of diluted fractal clusters. In
particular, dispersion relations characterizing the frequency-dependent localization of dipolar modes
in fractals will be analyzed here. : .

Optical properties of original (non-diluted) small-particle clusters are considered in Section 6. ‘.;m
general solution to the coupled-dipole equations are presented and analyzed in this section. Optical
properties of fractal and non-fractal small-particle composites are also compared in Section 6.

As shown in Sections 5 and 6, dipolar eigenmodes in fractal composites are substantially different
from those in other media. For example, there is only one dipolar eigenstate that can be excited by
a homogeneous field in a dielectric sphere (for a spheroid, there are three resonances with non-zero
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total dipole moment); the total dipole moment of all other eigenstates is zero and, therefore, they
can be excited only by inhomogeneous field. In contrast, fractal aggregates possess a variety of
dipolar eigenmodes, distributed over a wide spectral range, which can be excited by a homogeneous
field. In the case of continuous media, dipolar eigenstates (polaritons) are running plane waves
that are eigenfunctions of the operator of translational symmetry. This also holds in most cases for
microscopically disordered media that are, on average, homogeneous. Dipolar modes, in this case,
are typically delocalized over large areas, and all monomers absorb light energy, with approximately
equal rate, in regions that significantly exceed the wavelength. In contrast, fractal composites have
eigenstates that are often localized in sub-wavelength regions. Absorption by monomers in these
“hot zones” is much higher than by .other monomers in a fractal composite. This is a consequence
of the already mentioned fact that fractals do not possess translational symmetry; instead, they are
symmetrical with respect to scale transformation.

In Section 7, the non-linear optical responses of small-particle composites are considered. Nano-
structured composites may have much larger non-linear susceptibilities than those of ordinary bulk
materials. The erhancement of the non-linear optical response in composites is basicaily due to
strong fluctuations of local fields. These fluctuations are especially large in composites with fractal
morphology. In this case, local field distributions are exiremely inhomogeneous in space and include
“hot zones” associated with localized modes. The non-linearities emphasize the role of fluctuations
leading to huge non-linear susceptibilities. In Section 7 we consider a number of strongly enhanced
optical processes in composite materials. )

Brief summarizing remarks are presented in the concluding Section 8.

2. Critical behavior of the conductivity and dielectric function in a percolation system

The random resistor (R), and resistor-inductor-capacitor (RLC), network models are widely used
to describe electromagnetic properties of a percolation system; they permit the study of dc and
ac conductivity, respectively [8,9]. Pioneering work in this field has been carried out by Efros
and Shklovskii [10] and by Straley [11]. By generalizing the scale-invariance concept from phase
transition theory, and the related theory of dynamic critical phenomena (for the latter see, for example,
Ref. [12]), they developed a theory of electrical transport in a metal-insulator composite near the
percolation threshold.

In the quasi-static limit, the problems of finding the electrical conductivity and the dielectric
function are equivalent, since the corresponding equations for the current density and conductivity o,
and for the displacement current and dielectric function € are identical (see, for instance, Ref, [13]).
Accordingly, electrical.and dielectric properties of inhomogeneous media can be equally described in
terms of either the complex conductivity, o = o/+ic”, or the complex dielectric function, € = &'-+ie”.
As mentioned above, these two quantities are related via the equation € = (4i /w)g.

For a Drude metal, the dielectric constant is given by

4ario 4rio(0)
® =€t o[l +io7]’

€= 1)

where the dc conductivity o(0) is related to the plasma frequency, w,, and the relaxation time, 7, by
o(0) = qu\ (47r); the quantity €, is the contribution to € due to interband electron transitions.
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The properties to be considered below are different for the low- E..a high-frequency regions, c,\_rmonm
€” > |€'| and |€'| > €”, respectively. In the first case, the conduction electron response wmmoowwmna
with the Ohmic current (j, = o’E) dominates, while in the F:Q. limit, dipolar response associ
with the displacement current (jp = €'9E/dt = INEmQ.WV w._.m<E_m. If the free charge current mow:_bmﬂww
the susceptibility of a metallic particle in a composite is given by ﬁ.rn bulk value, x = (e IMWW\ T, Wi X
€ defined in (2.1) (for simplicity, we assume here that the host is vacuum). However, 1 the ocnn.ﬂ
of conduction electrons is small, one must take into account :o:.ooauwnmwﬁma .ormnmwm in opposite
sides of the particle surface. This is because free m-ooc,ow &mEmo.Q.n_nja in ﬁ._,.m Emr-m_.nncgovm range
are typically less than atomic dimensions, and metal En:."_om exhibit a:.w_mo:._o rather ENE. conl :oﬁ<on
behavior. In this case, particles in the composite are polarized and the dipolar response a_mv_wﬂ.na.ow_
curtent) dominates. The polarization is determined in general by the form wm a patrticle. MO_. a spheric;
particle, the susceptibility is given by xo = (3/4m)[ (e~ C / .Am+wv 1. At € = —2, there is a resonance
associated with the localized surface plasmon Q..w.wv excitation. As shown below, the L.SP resonance

crucial role in the optics of metal composites. )
Eﬂwﬂw Nosmam_, first the _oiw—.@mﬁ:@ limit, €” > |€/| Q..o. o VV o’ v.. mo_” a UEQ«. metal, this case
corresponds typically to the inequality w7 < 1 and the dielectric function is approximated by

€ = ey +4mo(0)r, €' =4mo(0)/o. (22)
For the low-frequency region, one can also neglect contributions from interband transitions and put

=1in Eq. (22). . S
i We Wmm_mw,w below that |p — p.| € p. and h = €;/€ < 1, where ¢; and € are dielectric functions for

i i ively. If these two requirements are met, one can
the (host) insulator and metal constituents, respectively. Hm.ﬁ S .
mmﬁ%. EmvnrooQ of Refs. [10,11]. The parameter k plays in this theory the same role as a magnetic

1d in ferromagnetic phase transition theory [10]. . .
mo,;“w mmooméw&o_mnmno function of a composite material near the percolation threshold has the

form [10,11,14,15]
€. ~ L E AMNAI.&?V R . 2.3)
€ €
where
s mu_w . th, g is th tor, and
i i i i i e wave vector,
B L e et e o e o etitea withthe loealiadon length (Al lengt

are measured in units of a typical grain size, a, which is assumed ﬂ..o be .mB.&_”v Below, we assume
that I, g~! 3> L, £ (the condition q' > | corresponds to the quasi-static limit}, so that the length

ale of importance is either L, or £. )
* HMM mow.:m.m function F(z) in (2.3) has the limiting forms described below [10,14,15].

For large values of |z|, F(z) is given by

F(z) = Az, z| > 1. .

For small |z|, the form depends upon sro?.w_. there exists a conducting path connecting opposite
sides of the sample. If such a path exists, i.e. if p > p,

F(z)=A + 4z, |z| <1 (p>pe)

24)

2.5)

(2.6)
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If there is no conducting path across the sample, y 7 s
1/(145) —~s/(t+s) w :
F(z) = Az +4% [Zl<1 (p<po), , @ Aol /Ao (O] SwASiV, iflel>1
e , i €= I — | ; (2.12)
| WMM%M mﬂﬂsﬂm is w__nmim::m for a de signal. Since ¢; < ¢, the condition |z| < 1 corresponds to . Aaelp = bl Wlel<dp>pe
, of a mwwﬂoa ErmMR Mmm %. Mo_, a%:or EH.@ is a distinction between conducting and insulating parts As€ilp — pe| ™5 iflz] €1, p < pe
. » ery large scales, [z] > 1, i i R . R
unimportant, and therefore €, has no mmvmna__ow.on on M_.. a»bow _mm”n:mom o»,. : Mosacozzm part becomes According to (2.12), in the limit Jz| < 1, quantity €’ has the same scaling dependence (as a function
P < Pe. s form is the same for p > p. and of p — p,) both below and above the threshold [10]. Note also that €/ has a peak at @ = 0 as a
The.percolation correlati . . . function of the frequency. The half-width of the peak dw = [4mo(0)/elip — 5 decreases to
P B elation length £ has the following critical behavior [4]: zero at p., and wmoMmmmrmwmm proportional to €lp — Wn_lu (ie. it diverges Mﬁ Lvﬁzw_.
E~lp—pel™. . 2.8) For the imaginary part of the dielectric function, € = (47/@)a,, we obtain from (2.3) and
i o . . i (2.5)-(27) (£ <K L) {10,11,17,18]
” M&m.n_»\w oﬂm_m.mﬂm= Aoornﬂnoov length L,, is determined by the mean-square distance traveled in a random §
: ith the travel time ¢ [4-6,16] ?mm\:t;e\paio:L\:tv sin Amﬂl@v , ifjz]>1
i . Aw.NAnvv o HN\G+$u
” N . (29) e ={ Admo (0w |p — pol's if |z| <1, p>pe (2.13)
where 2+ 0 = d,, = 2D/d is the fractal dimension of the rand 7i
A : + C om walk. The exponent d is the fract i - .
anwwmmwwmamﬂmum_g which determines the spectral dependence of the agmm% of i?.mmozwm HMMM et Tﬁ. o AOL Ip = pel™ 7 if |z| <1, p<Ppe
i Note that A; < 0 in (2.13).
prw . (2.10) The absorption coefficient is defined by a = 2(w/c)Im./€;. In the low-frequency limit (@7 < 1)
. : find € ~ ie" =~ iw*r/w. Then, for jz| < 1 and p < p., using (2.12) and (2.13), we find
For homogeneous media, @ = 0 and (2.9) gi P we . 4 S s ’
! .9) gives the usual diffusion law. For fractal " & €], € ~ z, and €, ~ 2, Accordingly, a =~ c)e"/ /€, and [17
n&%roa mw_m slowing down of the diffusion process in fractals [5,6,16]. v frctel chusers, ©°> 0 bl mM\N ’ a et o (o LV w
e frequency, w, of the applied field determin i 1 i € - O
iravetucs the rogion L pp! es the travel time ¢ during which the random walk an~ EM,R.EN_ p — pe A, (2.14)
4
X L, x @™'/0C¥0), Eq. (2.14) gives the known quadratic frequency dependence for a (fora Drude metal, this dependence
. (2.11) . ; . . . X A . . :
i The “anomalous” diffusi R is also predicted by the effective-medium theory in the dilute limit, as shown in Section 3).
! hose s g5 1o 2_9 Eww wmoﬁ.ﬁm [16] assumes that the random walk traverses a single cluster ﬁ For |z| < 1 and p > p,, comparing (2.12) and (2.13), we obtain that € > |€l| since €; ~ O(1)
5 s lore ae all o wm than L, t is p.E_uonB: to note that for an ac current, the above relation is valid and €, ~ z. Thus a = V2(w/c)+/€7 and [17)
- g " @monuumm-a_wﬁ.n impedances are much larger than that of the metallic path. This 1/2 12 1
imp. _Mm that SQM _mazo interaction between the clusters of a percolation systems (i.e. there are no a~ (wp/c) (@) lp = pel ™ 215
capacitances i i e .
vw&oi we MM&MMM WMOMMMMMMM nw_maﬂa clusters). o Eq. (2.15) gives the w'/? dependence of the Hagen-Rubens relation for conducting materials.
We first consider the case irmM p MAQMoP m..:mom Eo. ﬁm\\w :.W:M:m cases, § K L, and ¢ > L. For |z| > 1 the absorption coefficient shows the anomalous frequency dependence
i g . Lo, wi satisfying Eq. (2.8). Note that the function F
mwﬁw_om S.wwmw.d results in e. which is independent of £ in the limit |z| 3> 1 (this S__M,%owmw : & ~ ¢ (@)D HTO 202D, (2.16)
e of high m ti i 3 s q
2] < 1 and |p Im _ Nm:w c m“_% in ferromagnetic phase transition theory), whereas in the limit Tn this limit, the ac conductivity has the following frequency dependence [10,14,19]:
Pe , one has €, — € and €, — ¢; for p > p, and p < p,, respectively. This .
mmanmm M». course, with the expected limiting behavior. ' o = (w/4m)e! oc w0,
s follows from (2.5)-(2.7 ing is quite di ; - b , ¢ ¢ :
the relation |z| ~ rmomwgm_. iwmrm MMEAW_MWH :mwomwwmo% nt in the two limits, |2| <1 NEM_ |z| >> 1. Thus, We now consider the other limiting case when L, < £, so that L =L, in (2.4). The condition
accordingly, the limits |z] <« 1 and 2zl > 1 s the crossover frequency w; ~ (w;7/€)|p—p.|*; L, < & means that during a period ~ w-! a random walker traverses a region smaller than the
In woocnmmbom with Awuwv QEMN m_w_ AVW,W cormespond to < @ and > w, respectively. n%ﬂ.&mao: length £ Ber
.3) an .5)~(2.7), the real part i i i : C
forms in the limit ¢ <« L, [14]: ) part of the dielectric function has the following First, note that in the frequency domain the condition L, < § corresponds to the requirement
® > w, where wg is the crossover frequency which is determined by the R_wmob L, ~ & and
b. P ——— -
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which, in general, differs from the earlier introduced . For the anomalous diffusion, L, is given b
(2.11), and we have w, ~ £~@+®), Note that similar to the case considered above m,..n MA L,) a.mnw
is N.:mo a crossover .mnmnzoz&n @, corresponding to the transition from the region lz] AAe~ .8 the
region Jz] > 1 (which in the case of £ > L, defined by the relation L,, ~ (&/¢;)*/*+)). Thus there
is, H“._ %o:%ﬁ. a family of different crossover frequencies associated with <wic=m. &SBE.O regimes.
@ VVM V_..Eswﬁ_m __ NVWV_V, M,,a obtain from (2.3) and (2.5) the same result for €, as in the previous case

~ (€;/e)/ 9
€./ ~ (&/e)/t+ 217

for both p > p, and p < p,.

Note that Eq. (2.17) is valid for any L in (2.4) i it i

. 4), provided |z| > 1, and it is ail i
with anomalous frequency dependence (see, for example, Ref. _:_Ev. sonetly associated

For the case of |z{ < 1, with p > p., we obtain from (2.3) and (2.6)

€ ~ el (2.18)
With the use of (2.11), this leads to
& o €T\.‘.3+®:l_
e s (2.19)

so that the corresponding ac conductivity is given by o’ o« w!*/*(2+} This result was fir
Gefen, Z&.:.Ew and Alexander [16], who developed the theory of anomalous diffusion MM W%MMMMMM
clusters. Their method consisted of integrating (2.9) over the cluster size distribution in a percolation
&GHQ.F Note that, as was pointed out by the authors [16], this method does not take into account
o»vm.o:mbowm between different clusters. This is equivalent to the case when the polarization of th
BGMEB (within which the clusters are embedded) tends to zero. ©
sing the known relations for critical indi =d, = i = i
one i G ces [4] 2+@=d,=2D/d and t/v=d—2—D +2D/d

1" ~(D+2~d)/d.
) . (2.20)
In the dielectric limit, p <pe (with |z} < 1), we obtain from (2.3) and (2.7) €’ oc w™, where
m=1 I.Q+N®\C\&zv. Using the relation ¢t/v =d —2—D +d,, and the conjecture un+u = &“\ [20]
we ovSS m=2—(D+ N +d)/d,,. Note, however, that this result is based on the use of (2.11) E:m
thus it neglects the capacitance-related interaction between the clusters.
m.__uw:m.m.mam. (2.3)-(2.5) allow one to calculate the dielectric function of a percolation system in
imiting cases, i i i i i
oo W N es, [z] > 1 and |z] < 1, with p > p, and p < p, (metallic and dielectric behavior,
.H.._,.m present EooQ. mm. also valid for a system consisting of a good conductor and a bad conductor, In
particular, a theory similar to that described above was developed for the complex dielectric constant
wm w_ mcwanooﬁcongrzonz& conductor transition in a disordered system [14,21]. The parameter A
in this case is given by & = o,/0; where o, and o, are the conductiviti
upereoniing oy el ] Os n A conductivities of normal (n) and
Above, we assumed that @7 < 1. If wr ~ 1, then the relation €] i i
. ) . ~1, > ¢ still typically holds for
Bam&-:vm:_mﬂoﬂ composites B.m, thus, the theory outlined above can be applied. moﬁm\oh mw“ this case.
€|’ ~ €” and one has to take into account modifications due to the polarization of particles wmmo&wam
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with the displacement current. Accordingly, the effective dielectric constant is expected to depend on
the particle form in this case.

Such dependence becomes especially important in the high-frequency limit, w7 > 1, when [€'| >
" and the displacement current dominates. At these frequencies, a more appropriate description
of the optical response involves light-induced dipoles on particles and interactions between them.
The dipole-dipole interaction in a three-dimensional space is long range. Accordingly, in addition to
the interaction of particles within one cluster, inter-cluster interactions are also of importance in a
percolation system in the high-frequency range. Spatial scaling occurs in a percolation system only
within a connected fractal cluster (in the range r < £), while the system as a whole is, on average,
three dimensional and homogeneous. (Inside the volume occupied by a fractal cluster there are many

- other smaller clusters; although these clusters are not geometrically connected with the larger cluster,

they strongly interact with it via dipole forces.) We anticipate that fractality in the space domain
results in the scaling of dynamical excitations only if the inter-cluster interactions are not too large.
Because of the long-range character of the dipole-dipole interaction (prevailing in the optical range),
the scaling in a percolation system probably does not play as an important role in the optical range
as it does in the low-frequency limit (where the Ohmic current dominates and the capacitance-related
interaction between clusters is relatively small). In accordance with this, numerical simulations [18]
of absorption by percolation clusters do not show a critical dependence on p — p. in the visible part
of the spectrum. (In the optical range, the mean-field theory {21] can often be used successfuily to
describe the optical propesties of a percolation system.)

Note, however, that for a mixture of well-separated and, therefore, non-interacting, fractal clus-
ters (such as small-particle aggregates in colloidal solutions), scaling can play a crucial role (see
Section 5).

1t is also worth noting that in the form presented above percolation theory cannot be directly
applied to the description of optical properties in the range where LSP resonances are effective.
This is because one has typically |e|/e; ~ 1 in this spectral range and thus the theory requirement
l€]/€: > 1 does not hold. However, a modified theory that takes into account alterations of particle
susceptibility due to its polarization and the resonant character of the excitation, can be developed in
this case [22-34].

The susceptibility of a polarizable spherical particle in the optical range is o = (3/4m) (e —
€)/(e+2€) = —~(X +i6)~", where

e'e;

oo (221)

_r‘
T 43E2] s im0t =4

-1

X=—Re(xo)" =—73 le—ep |’
Here X plays a role of a spectral variable and & is a decay parameter which is small, § < 1, in the
high-frequency range. In the vicinity of the LSP resonance (€'(wg) = —2¢;) the value of X is also
small, |X] < 1 (X o (@—eq). Thus, we have |Xol > 1 near the LSP resonance and a scaling theory,
similar to the phase transition theory for [T —T,|/T. < 1 and the percolation theory for [p—p <1,
can be formulated. Such a theory was developed by Stockman, Shalaev and their co-workers [24-34]
(see Sections 5 and 6). In this theory, the point X =0 plays, in a sense, a similar role as |T - T/T.
in the phase transition theory, and as |p — p.| in the percolation theory. In all of these cases, the
scaling behavior of physical characteristics is associated with long-range fluctuations near a critical

point.




72 V.M. Shalaev/Physics Reports 272 (1996) 61-137

3. Mean-field theories and numerical techniques
3.1. Maxwell-Garnett and effective-medium theories

One of the appealing features of effective-medium theories is the ease with which one may calculate
the dielectric constant of a composite material e,. In the case of a two-phase, d-dimensional medium,
the Maxwell-Garnett theory (MGT) yields the following expression [35] for €, in terms of the
dielectric constants of the host medium €, and spherical inclusions €, (present with volume fraction
p1):

€, — € _ € — €
«+@-De Pet@-De
(note that similar approaches have been also developed earlier for dielectrics by Clausius [36] and
Mossotti [37], and applied in optics by Lorentz [38] and Lorentz [39]). The MGT expression is

obviously non-symmetrical with respect to the exchange €, — €5, €, — € and is justified only in the
limit of small p; when it can be simplified:

(3.1)

€ — €3

e+ (d—1e,

Thus, in the dilute limit, p; < 1, the interaction between particles is small and there is only one
resonance at €; = —2¢; (for d = 3), corresponding to the surface plasmon resonance of an isolated
spherical particle. For metal particles in vacuum, in accordance with (2.1), the resonance occurs at
w=w,/V3. ,

The absorption coefficient a =2(w/c)Im. /e, for p; < 1 is given by (e = 1)

€. =€ +3pe; +0(p?). 32)

@ e —1 12
a = wﬁ_ - Im _mm_ﬂg
Fig. 1 shows the absorption coefficient of a dilute suspension of metal spheres in vacuum, as calculated
from MGT [21] (3.3). The surface plasmon resonance results in a strong absorption near o = w,/ V3.
In the limit @7 < 1, MGT gives an ®? dependence for the absorption:

(3.3)

a=Co'p, C= 9/[4mo(0)c]. (3.4)

While the experiment does show the predicted dependences on @? and p1, the magnitude of the
absorption by a composite is typically much larger than that predicted by MGT. Enhancement of
far-infrared absorption by a composite will be discussed below.

For larger values of p;, Eq. (3.1) becomes a poor approximation. In particular, it fails to have a
non-trivial percolation threshold for either of the two phases. The symmetric (in the two components)
effective-medium theory (EMT), known also as coherent potential approximation, was first proposed
by Bruggeman [40], and it offers the following formula for calculating €,:

€] — €, € — €,
Ye ¥ (d - De, &+ (d— e,

This is a quadratic equation with the solution (see, for example, Ref, [41])

p +p2 =0. (3.5)
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Fig. 1. Absorption coefficient, a,, for a composite of volume »,BoE.E sphel Drud , 100
w:mgn_anﬁ_ in ..%roﬂ medium of dielectric constant unity, as calculated in the quasi-static approximation and the dilute limit.

Taken from Ref. [21].

i i i i f volume fraction p of a Drude metal and 1 — p
Fig. 2. Schematic of Re o.(w) of a metal-insulator composite made up of volum i -
omwr_wEwﬂo—.. as calculated in the EMT in the limit 7 — oo. The heavy <«Em§~ line at & = 0 denotes a m.?.no_,._o:. irhM”
represents the Drude peak; the integrated strength of the 8-function is proportional to the height of the 8-function. The p
at p = 0.999 is arbitrarily increased in height for clarity. Taken from Ref. [42].

_ 1
T2(d-1)
where & = p,€, + py€;. The upper sign in Eq. (3.6) should be used when €, and e, are both real
mmeMWmM_erim Relo.(w)] = (w/4mw)Im[e.(w)], plotted against frequency .mon several <”>._Mwoqm.
of p, as calculated within the EMT [42]. In 8:5& to a sharp vamu.n described by M.oma y
expression, the EMT shows, for p < p. (p. = w.\u in the EMT), a single peak, EMM en xw
electromagnetic interactions between individual grains. For pP>pea UE.% ma&.ﬁ. center : at Smml
and corresponding to the dc conductivity of the composite, am<o_o.mm in addition to the _mz ace
plasmon band. The integrated strength of the Drude peak grows as p increases. The surface p! mmBmM
band eventually shrinks and narrows to a peak centered at o= &n,\ﬂw. 9.2 corresponds to a Mm_
resonance (charge oscillation in the vicinity of a mww.omcw_ void in an onrmmé_mn rﬂEcwonmwam metal).
Frequency dependences similar to those shown in Fig. 2 have been seen in mxuonaoun [43].

e {de— &1 — e £ [(de— e — €)* + 4(d — Deie]?}, (36)
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3.2. Differential effective-medium theory. Enhanced far-infrared absorption by fractal metal
aggregates

It is well known that when a dilute distribution of small particles is placed in a dielectric host,
long-wavelength absorption of the composite is proportional to the square of the frequency (see
Egs. (2.14), (34) and Fig. 1). What is surprising is that the magnitude of the observed absorption
exceeds the classical prediction by a factor of 10* — 106, There are many suggested explanations of
this phenomenon [44-61]. Among these are quantum size effects, broad distribution of particle sizes,
absorption due to resistive coating on particles, clustering of small metal particles into clumps, and
formation of percolation clusters and fractal clusters.

An interesting extension of the EMT was suggested by Fuchs, who considered a diffuse-cluster
model in which each aggregate is a sphere with a radially dependent filling factor [58]. At each

radius r, the Bruggeman effective-medium theory was used to find the average dielectric constant
€(r) (d=3) :

€ — m«ﬁw.v
€+ 2¢.(r)

mNIMNA\v _

pn atze.n " 3.7)

+[1-pi(N)]
where p,(r) = 1—p,(r). This model demonstrates that clustering broadens the dipole absorption peak
and gives a low-frequency enhancement, ~100. However, the experimentally observed enhancement
still significantly exceeds that predicted by the theory of Ref. [58].

Stroud and Hui developed the differential effective-medium theory (DEMT), describing far-infrared
absorption by fractal clusters of metal particles embedded in a dielectric host [54]. They found that
the absorption per unit mass of metal was enhanced, relative to that of isolated particles, by a factor
which can equal several orders of magnitude; the enormous enhancement in the absorption occurs
because of fractality.

In this model one begins by considering a cluster of radius R, with volume fraction of conductor
p(R) and of insulator 1 — p(R). Then, adding metal and insulator to the cluster in such a way that
the radius is increased by an amount SR, one may derive the following differential equation [54]:

de.(R) 3 dp(R) —&(R)

€
R " Tp® ar “Piam’ (3.8)

where ¢; is the dielectric constant of the insulator, Eq. (3.8) can be integrated to obtain the cubic
equation

R [a—e@P 1 .
€.(a) TiﬂwL T (B 3.9

where a is the radius of small metal particles forming the cluster and e(a) is the dielectric constant
of a metal particle. Note that similar equations have been used in DEMT of sedimentary rocks [62].

The volume fraction p(R) of metal particles in a fractal cluster (embedded in a three-dimensional
space, d = 3) is given by p(R) = (R/a)P~3, from which, using (3.9), one obtains

€.(R) m..IMAhv ul 33-D)
e.(a) Timmﬁc_ = (R/ay>®™2. (3.10)

VIM. Shalaev/ Physics Reports 272 (1996) 61-137 15

The corresponding equation for the real part of the cluster conductivity, o, (R), in the low-frequency
limit has the form [54]
d.(R) = ' (a) (Rfa)~C/PE-D), 3.1
e e

As follows from Eq. (3.11), the conductivity of a cluster decreases with increasing radius leading to

an enhancement of absorption. ) o
In the low-frequency limit, the absorption e per unit mass of metal is given by [54]

o~ L (R a) DD, (3.12)

o(a)
Thus the far-infrared enhancement due to aggregation of initially mmo_mﬁoa. wmao_mm. into w_.»o"m_&o_uuwamm
is given by a factor (R/a)®/P3=P). (The corresponding enhancement in two dimensions, d = 2, is
(R/@)*?~P)) Clearly, the enhancement factors can be enormous for a large cluster. . et
In the end, we mention some other related papers in this field. Sheng and co-workers, t wn_v:mm
re-formulation of the coherent potential approximation, msmmmmn&. a new Moroao which 6%&5 e o
identifying the quasi-wave modes as well as yielding En:.. ﬁ_anm.a_ou zuu_w:o:m Hmw.u M&: ME _m_..%mvo—wm
Sheng et al. also calculated the local fields in random a_m_won:qo Ema_.w characteriz uh :M: o_mMmu‘
percolative correlations [64], and studied the effects of :EE.Em scattering by mm.mﬂwwwﬁo mn._u lus Mnmmlozm.
Finally, Torquato developed a unified methodology to m:wsr@ @.@ Bo.%r&cmu: e an um“mw Mno ous
properties (such as the electric conductivity and elastic moduli) of inhomogeneous mi
general viewpoint (see Ref. [66] and references there).

3.3, Numerical calculations of the effective dielectric function

As mentioned above, the random 8mmmﬁovwna:oﬁo?o%wo:o_. (RLC) :ogo—.w Bom&. is c,:am_um ;mﬂmm
in numerical simulations of the effective 8:&:2.@8 of Eronma:oocm media N.Sa.w wn%»h__“umww of
percolation systems [8,9,21]. A network containing ooBE,.wx _B_ummm:mmm o.M.. gm. _% w_ MS_ en 0
represent “insulating” and “conducting” uwaownm,.nw: describe oonﬁom:@m.o M, I ru ﬂM metal and
dielectric [67]. An insulating bond in this model is represented by a capacitor C* w1 >

iwC’ (3.13)
o= . .

A metallic bond is represented as a series of a resistor and an inductor in parallel with a capacitor.
The admittance of a metallic bond is

1+ iwRC — w*LC (3.14)
In =TT RyiwL .

where R is the resistance of the conducting element and L and C are its msazmﬁ:.w.m Bw.a .omuw\o_lﬁm.om
respectively. The ratio o/0: =1 — sw /l@(w —i/7)] has a Drude form, with the choice L =

F - = ‘
¢ %Lowwaﬂ_w\wgm. .mm.aoaﬁw methods used for simulations of RLC networks E.M the Wwﬂ.mww,«“wﬂmw
(TM) approach suggested by Derrida and co-workers [68] u.:a E.a Y—4 ﬁwm:m ﬁmﬂn.w?w_ 1 devels % ¢
by Frank and Lobb [69]. Note that although the ¥ — A algorithm is faster than the pp! N
can be applied only to two-dimensional systems.
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(b)
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Fig. 3. (a) Schematic showing construction of the cross and square fractals, at stages 1, 2, and 3. (b) Reo.(w)/p at low

frequencies for stages 1-5 of a cross fractal. Taken from Ref. [703.

In the TM approach, the d-dimensional network is built by adding successive (d — 1)-dimensional
layers in a particular direction [21]. By applying an arbitrary voltage, V;, at each surface sites of
the most recently added layer, one relates the currents, [;, that flow into these sites to the voltages in
terms of a symmetric admittance matrix A, : I, = Y.; AyV;. As new bonds are added to the network
in order to complete the next layer, Aj;; changes. Provided new bonds are added one by one, it is easy
to calculate the resulting changes in A,;.

The Frank and Lobb algorithm consists of a repeated application of a sequence of series, paratlel
and star-triangle (¥ — 4) transformations to the bonds of the lattice. The final result of this sequence
of transformations is to reduce any finite portion of the lattice to a single bond that has the same
conductance as the entire lattice.

We briefly consider the results of absorption simulations based on the above algorithms. Hoffmann
and Stroud [70], using the ¥ — 4 algorithm, have calculated the far-infrared absorption of a deter-
ministic fractal embedded in a two-dimensional dielectric host. The clusters were built up in stages,
starting from four metallic bonds arranged in either a cross or a square (see Fig. 3a). Subsequent
stages are formed by repeating the generation process, surrounding the cluster with four additional
clusters identical to the existing one. The linear dimension of the cluster increases three-fold at
each stage, while the number of bonds is multiplied by five, i.. the clusters have fractal dimension
D =1n(5)/1n(3). Fig. 3b shows Re 0(w), normalized by the fraction of metallic bonds, p, for the
cross fractal. As follows from the figure, Re o./p o »* and increases sharply with cluster size (this
was also predicted by the DEMT (see (3.1 1)).

Brouers and co-workers [71] applied the Y — 4 algorithm to simulate the near infra-red absorption
of a two-dimensional metal-dielectric composite on the basis of the madel of a square lattice occupied
by bonds of metal (with probability p) and insulator (with probability 1—p) conductance. The results
of the simulations are illustrated in Fig. 4a and 4b. Fig, 4a shows the IR optical absorption 2mre’ /A,
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for three wavelengths A, = 2.2,A = 1.7, and A3 = 1.5 um. Circuits of a linear size of 25 were
averaged over 1000 circuit configurations, The optical absorption was found to be maximum for a
concentration slightly higher than p, = 0.5. As the wavelength increases, the contribution of conducting
electrons increases, while the contribution of cluster modes (associated with the displacement current)
decreases. This results in the narrowing of the central absorption curve around the origin (p ~ p.),
and increased absorption for (p — Pe)/p. — 1 as the wavelength increases.

Fig. 4b shows the result of two-dimensional simulations for A = 1.7 xm, compared with the EMT.
The behavior is qualitatively similar for different models, although, for the EMT, the maximum
is closer to p = p,, and the width of the central peak is smaller. (Similar results were obtained in
Ref. [72] based on the symmetrized Maxwell-Garnett approximation, which is a version of the Sheng
approximation [73].) The authors ascribed this discrepancy to configuration fluctuations neglected in
the EMT. Good agreement of the results of 2d simulations with EMT calculations was also reported
in Ref. [74].

In Fig. 4c, a comparison between EMT and TM calculations for a three-dimensional Iattice is
shown [72]. Similar to the two-dimensional case, the maximum occurs at concentration p* = 0.35,
higher than the percolation threshold ( Pe ~ 0.248). Further, the absorption maximum predicted by
EMT is higher than that found in the simulations.

Zabel and Stroud [75], using an RLC network, performed two-dimensional simulations for random
diffusion-limited aggregates (DLA) as well as for ordered cross and square fractals (see Fig. 3a).
They showed that the fractal character of metallic bonds embedded in a dielectric host leads to a large
broadening of the spectram of surface-plasmon resonances in the optical region. In ordered fractals,
an optical conductivity is shown to be self-similar in frequency; the authors have suggested that the
new plasmon frequencies appearing for each iteration should decrease with the size ! of the fractal
“blob™ [76] within a larger fractal as I~* with @ = 0.56. .

Brouers et al. [77] also stndied effects similar to those reported by Zabel and Stroud [75). These
authors used a deterministic hierarchic electrical network that was constructed on a deterministic
fractal lattice (DFL). (The DFL was introduced previously by Kirkpatrick [8] and Mandelbrot [2].)
For the two-dimensional lattice, Brouers et al. showed that the constant B occurring in Re[o,(w)] =
Bw’p (which describes the far-infrared absorption) oc R*, where R is the size of a cluster, and
x = —In(22-' — 1) /In2; the latter differs from the exponent, x = 3(2 — D), predicted by the
DEMA [54]. Their model also predicts a saturation length, I, oc ™7, above which, for a given
frequency, the absorption is size independent (the authors interpreted I, as the crossover localization
length: [, ~ L, ~ @™). The exponent y was found to change continnously from a value Yre =
(D -2+ x)"!, in the low-frequency, resistive, (RC) range, to the value y;c = 2ygc, in the high-
frequency, self-inductive, (RL) part of the spectrum. (Note that the difference in spectral dependence
between the resistive and self-inductive frequency ranges, was also discussed earlier by Robin and
Souillard [78]). It was shown in Ref. [77] that new frequencies appearing at each iteration follow
the rule w,,;/w, ~ L™ with a = 1/yre.

The resuits of 3d numerical simulations performed by Stroud and Zhang [18] using an RLC
network and the TM algorithm, are presented in Fig. 5. As follows from the figure, the effective
conductivity exhibits a Drude peak at w = 0 that appears only above the percolation threshold Pe-
Also, a broad spectrum of resonances, whose lower edge approaches zero frequency at P, is- clearly
seen in the figure. In accordance with speculations presented in the end of Section 2, for the high-
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frequency region, the absorption in Fig. 5 does not exhibit a critical behavior (as a function of p —p;)
the percolation threshold. . o .. o
:.wwn is M%ﬁonw:ﬁ to mention that an RLC network, with its stick-like Bm.g::o bonds, m—wEmoBEM
simplifies the actual local structure of small-particle composites. As mentioned above, ?w monM nw
a particle becomes important at high frequencies. (This form mnosmww affects the BmmE.Eam of the
dipole moment induced on the particle.) Also, in all numerical ao.rz_e._am that were m_mmon_u& h&oﬁw,
the actual Maxwell equation V-D = V- (¢E) = =V - (¢V®) = 0 is replaced ww nwm a_.mommwm an: omm“w
i i i E; — €,E; ith E; = (&; — &;)/a) summed over
hich contains differences such as (&:E; — €;E;)/a ?.<: i = (2 a
M\ohwnmﬁ neighbors. Such a replacement is possible only if a ?:o:o:. (PorE in our .ommov oruum_mm
little over a lattice period a. At high frequencies, however, the field arises mno.B @Go_wm induced MM _M
particles, and it has a strong spatial dependence (o< r~3) that ?oazoo.m a mﬁEmmE; &:Emo A_u e d
me:En_,am on a scale of the period a. Thus, in the high-frequency region, light-induced &mo es an
the corresponding dipolar (or multipolar) interaction must be taken into account; such considerations

will be discussed below in Sections 5-7.
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4. Spectral theory for composites and recursive spectral representation for self-similar
structures

4.1. Spectral representation

The spectral representation is a very efficient approach for the calculation of the dielectric function
in inhomogeneous media. It was developed by Bergman [41,79], Fuchs et al. [57,80-84] and by
Milton [85]. Below we briefly consider the basic idea of the spectral theory, following Refs. [82~
84]. According to the spectral representation theory, for a continuous medium consisting of two
components, the effective dielectric function can be written as [81]

1
—1= _ &i(n)dn
e/e L=pi|Gile/e :+o\?\m~|:-_+= . (4.1)
or as
1
€./e1—1=p,{ Ci(er/€e, - 1) +\. &(n)dn s (4.2)
0

(&2/fe,— 1)1 +n

where g(n) and g(n) are the “spectral density functions” for ooi—uo:@:a 1 and 2, respectively,
and C) and C, are the strengths of percolation of the respective components. Eqs. (4.1) and (4.2)
are written from the point of view of component 1 in a host component 2, and component 2 in
a host component 1, respectively. The 81(n) and g,(n) are related through the symmetry relation
ping(n) = p(1—n)gy (1 —n) [81].

The physical meaning of the spectral representation is as follows. The first term in (4.1) describes
the contribution of an infinite cluster of the constituent media to the dielectric function (we assume
for definiteness component 1 to be a conductor). It is associated with the dc conductivity of the
percolating system. Note that the term C, (e, /€2~1) in Eq. (4.1) can also be obtained by replacing
&(n) by gi(n) + C,8(n) and extending the range of integration so as to include the point n = 0.
Thus, the existence of percolation is equivalent to a mode at n = 0, the percolation mode [83]. The
C’s can be found from the relation p;C; = lim,,_,o.(€./€;), which in the low-frequency limit acquires
the form p,C, = ¢.(0) /o, (0) [81]. .

The second terms in Egs. (4.1), (4.2) describe contributions to the dielectric functions from
different possible collective resonances of interacting particles in the composite [81]. The polarization
factor » is small for needle-like geometrical structures and close to unity for plate-like objects. The
function g(n) gives the density, both-in number and strength, of these various shape resonances.

In particular, for the MGT describing -a dilute system of spherical particles (p,C; — 0 in the
dilute limit), the spectral function is 81(n) = 8(n —ny), where ng = (1 — p1)/3, and an absorption
peak (corresponding. to the Mie resonance) occurs at @, = VA =p1)/3w,, provided ¢, is given
by the Drude formula. For a non-diluted system of particles, the interaction is expected to result in
broadening of the spectral function, leading to a continuous set of surface modes characterized by
different depolarization factors n.

There are three sum rules for the g’s [81]:
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1
\@S%u i-c, (4.3)
[
f 1
[raman=30-p), (4.4)
0

and
1
n)dn

U=p)C+piCi+p [EDE Ly “5)

[
For a collection of N particles in vacuum, the spectral function g(n) is not noRE:m:m, but ooamim
of discrete modes with strengths ¢, and depolarization factors ng Amnooamnwm& m?@ E.APC can be
represented as a sum of terms ¢,8(n — n,)). In this case, the total polarizability « is given by [84]

AL o S S (4.6)
=i M (4mx)-'+n,’
where v is the volume of a particle, and y = (€ — 1) /4#r. The total strength of the modes is
Se=1; 47
they have a centroid of 1/3,
N en =173, (4.8)

and lie in the range 0 < n, < 1. Eq. (4.6) generalizes the well-known expression for the wo_wauwwm_wa\
of an isolated spherical particle of radius R,, in vacuum (@gpp = Y = @.\As.v [ A.Aa.»\v |.~+ 1/317t=
R3(e—1)/(€+2)) to the case of a collection of interacting particles. In this case, Eﬁ_.mn:o:m gméow:
particles result in a set of eigenmodes characterized by depolarization factors, n,, and contributing to

the total polarizability of a cluster with a weight c,. ) ) ] o
Note that the spectral representation expresses the effective dielectric function of a composite in

terms of the spectral density, g(n), but it does not provide a method for determining g(n) from first
principles. However, if the expression for €, is known, then g(n) can be found from [81]

1
‘n') = —1li /€2 —1), 4.9)
&i1(n') puey lim Im(e./€; - 1) |
where the »’ and s are introduced by the relation
61/, — 1)V =—(0 +is), s>0. (4.10)

For example, in the EMT, one obtains from (3.5) and (4.9), (4.10) the following expression for
&i(n) [81]:

g8 (n) = ﬂws.Ti +6(1+pon— Gp - D @




Y
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Introducing 4p, = p; — p, (in the EMT Pe =1/3) we rewrite g;(n) in the form

&) = ms 7 (n = ) (g — )2, “.12)
if myp <n <my and g (n) =0, otherwise. Here, for lap| <« 1,

ny={4+ 34p, —2[(1 +34p)) (4 — mb}:_\nv\w 7 c?_m_vn\w, (4.13)
and

my={4+34pi+20(1+34p)) (4~ 64p)]"} /9 (64p, +8) /9. (4.14)

Fuchs and Ghosh [81] have proposed the following generalization for g(n):
&(n) =Cn~ N (n— m)' " (my — n)%, : (4.15)

fa>0, 0<n,<nmy<1, and 81(n) = 0, otherwise. With this choice for g(n), they were
- able to reproduce (in the limit |e,/e;| < 1 and |p; — Pel = 14pi| < p,) the results of percolation
theory for the case £ <« L,, (see Section 2). They found, in particular, that @ in (4.15) is expressed
in terms of the percolation theory indices as & = 8/(t+s). (The expression for 8 is more complicated
and depends on py, ny and @.) )
Note that the theory based on the form of g(n) proposed by Fuchs and Ghosh is phenomenological
and contains the free parameters a, ny;, and my. The theory, however, successfully explains basic
dielectric properties of rock-and-brain systems and, in particular, Archie’s law [81].

4.2. Recursive spectral representation Jor continuous self-similar structures

We consider, first, self-similar continuous composites and then fractal clusters of spheres. Our
considerations are close to. those presented in papers by Fuchs and co-workers [83,84].
In the first stage of recursive construction, one randomly places unconnected inclusions of compo-

nent 1, with volume fraction p;, into a host of component 2. The effective dielectric function, e,
of the mixture is

€V = M(ey, €0, 1), , _ (4.16)

where the form of the function M depends, in general, on the geometry of the composite.

In the next stage, larger inclusions of component 1 (with the same filling factor p,) are incorporated
into’a host consisting of the first-stage composite. The effective dielectric function of the second
stage, €{?, is found by replacing the host dielectric function €, in Eq. (4.16) by €. Repeating this
procedure recursively, the effective dielectric function after stage j is

€D = M(e), eV, py). : 4.17)

This approach can be applied, in particular, to brine ooﬂ&inm rocks, in which the volume fraction,
P, of insulator (rocks) is recursively added to a conducting host (brine).

Note that in the DEMT (see Section 3.2), an infinitely small fraction of the first component is
introduced at each stage, whereas in-the recursive theory this fraction can be finite. If the initial
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volume p, approaches zero, then it can be shown [87] that the recursive theory becomes equivalent

to the DEMT. - )
Using the spectral representation (4.2), one writes Eq. (4.16) in the form

1
& &(n)dn (4.18)
il o ) G&mw\ﬂlc+o\.ﬁmw\m_I.SL+= )

€

. i itten from the point of view of component 2. If g,(n) has a wmmw. at

Wo.wmzﬁw meMm.meawwvu _MMMM — n)), Em_.mmmm a snrface mode at n = nj .ammzom by @._a 3~R_OM=

[€2/€1— 11" +no = 0. For dilute spherical inclusions of component 1, there is only one dipole mode

(which has non-zero weight) at np=2/3, or €,/€; = —2. . . )

Following Ref. [83], we introduce variables XXy en X defined by €/e; — 1 = —1/x,..7,
€ /e, = —1/x;. Then, Eqs. (4.16) and (4.17) can be written as

xp=h(x), ..., x5 = h(x;-1), “.19)

where
-1

1
: n)dn
) =4 py |Coynt [BDEL (420)
’ x—n
0
Using the recursive map given by Egs. (4.19) and (4.20), one can calculate the variable x; associated
with the stage j of the recursive procedure. ) . ] .
It is instructive to introduce the spectral function g (j, 5. for the recursive structure at stage j in
an expression similar to Eq. (4.18); €{!? on the left-hand side of the Q.EwnonA ‘ws__mﬂ%n _d_u_mnan._ by
€, and on the right-hand, p,, C;, and g,(n) are replaced by the n:.».:::m.m b5 13, and &2(J, .5.
nm.mm@oﬁ?oq. The volume fraction of component 2 at the end of stage j is ¢, = (p;)/; the percolation
constant is

D= ¢y i / . 421)
¢ = ;" Jim (el /e2) = (C), (421
and the spectral function g;(j, n) is given by
7y~ lim (e 422
gUin) = (mg?) "' lim (e /1), (4.22)

where we set €,/¢€; = —1/x=—1/(n+is) in Eq. (4.22). . N
From the waAo expressions, one may determine the spectral function at the end of stage j if
it is known for the first stage. In particular, for the MGT one has for the first stage: w.NCO
(11— 0&2: — 1) where C; =2/(2+p1) and ng = (2 + p1)/3. By such means, one ultimately
obtains the dielectric function for arbitrary stage j. . ) .
As one continues the recursive procedure, the spectral ?:o:os. n0<n_o.vm an »m?ox:.:wﬁo_% self-
similar structure [83], with a distribution of scaling indices associated with multifractality that can
alyzed by the procedure suggested by Halsey et al. [88]. ) ) - ]
ghﬂﬁ%mﬁwﬁ HWE nao_w:m?o spectral theory also permits the consideration of on:n& behavior near
the percolation-threshold [83]. However, in the recursive theory [83], the wonwo_wao.a. Emomro_m is
¢ = 0 (we assume that component 2 is a conductor which surrounds the insulating inclusions
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of component 1). Since ¢5” > 0, one only approaches the percolation threshold as the number of
iterations increases and never actually reaches the threshold or passes through it. Fuchs and Ghosh
suggested [87] that this explains the difference in critical indices found on the basis of the recursive

spectral theory and those following from the standard scaling theory near the percolation threshold
(see Section 2).

4.3. Recursive theory for collective modes of a fractal cluster of spheres

We now consider the iterative procedure used by Claro and Fuchs to find the polarizability of a
fractal collection of spheres in terms of the polarizability of the generator [84]. In this case, a cluster
of spheres (the generator) is replaced by a single equivalent sphere, which is used to construct a
larger cluster in a self-similar way, and this procedure is repeated recursively. The examples of three-
dimensional generators are octahedral clusters with N = 6 and with N =7 (i.e. with and without a
sphere at the center, respectively). In the octahedral cluster (N =6), sphere radius a and distance R =
2a0 between nearest neighbors, the radius of the equivalent sphere is a = (1/2)R+a = a(l+o),
so that, if neighboring spheres in the generator touch each other, the equivalent spheres also touch
each other and the spheres in a given generator touch the spheres in neighboring generators.

It is worth emphasizing that the recursive treatment considered below is approximate; it simplifies
the actual interaction between particles in a large cluster (even within the pure dipole approximation).

The polarizability of a sphere of volume v is given by

12}
aph = VXopn = 7 [(47x) ™" +1/3] ! (4.23)

with y = (& — 1) /4w the susceptibility of the sphere material. Using the spectral representation for
the polarizability of the spheres in the generator, we obtain (see also (4.6))

: v Nv c
Wog YO (y-1 AL s
@ = = [T 4173 Aﬂh@ﬁ\«vl,f:%

(4.24)

where V) is the volume of the equivalent sphere and N in the number of spheres in the generator.
Repeating the procedure recursively, we have at stage j

R 740)] . NVU-B C
U = -1 -1 M ”
o= 47 [y )7 +1/317 = 4 & Ts\dwuswl +n, (425

Introducing the variables

y=~l@m) ™ +1/31, y0 = —[@mxP) 1 +1/31,.., YD = ~[(Amx D)~ 4 1/3],
Eqgs. (4.24) and (4.25) can be written as
YO =h(y),..., YP=h(U) = pO(y), (4.26)
where
_ e
h(y) = leﬂ| , (4.27)
A

1
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=n,—1/3, and F = NVU=D/VD = Nu/V is the filling fraction of spheres in the @mu?w_ﬁm
ero_.n.h The :o.aaou 4 (y) denotes the function (y), which has been iterated j times, i.e. KD (y) =
h(y), h? = h(h(y)), etc. Eqs. (4.26) and (4.27) define a Bw@..iEor can cm_w_mom iteratively to
find ,mconmmm?n variables 1, y®, ..., ¥ as a function of y, cmeE:m with Y0 = h(y). @ g
The collective surface mode spectrum of the final structure is ammawm by wﬂ wqoamﬁcma. an
depolarization factors n? that appear in the spectral representation for & = =V /(4my?:
W = :lcvu s = c|C|Vu MF:. (4.28)
T ar m +ad  Am Ty -
j ] j v i in the final structure. (The
() = p) —1/3, and v = N/p is the actual volume of the mwwa_.om. in the.
Mﬁmﬂvwﬁ is —mna wm\w general label for the modes at any stage of iteration, whereas n._w mwacmw .m
which was used previously, is a label for the modes of the mnzonwmo_..v The total mqodmwn.m .wvm Som Ms =
1, and, since the final structure has cubic symmetry, the centroid Am_V:: Mc_m T, CPn = 1/3 (or
i «. § . . - . . J A A
CWyW) =) is satisfied. The modes lie within the range 0 < n;/ .
MU%M\W_ nﬂﬂanW = —[(4my)~t +1/3] is, in general, complex, y .m,vx + iy, msvw assume that VM
is small and different modes m do not overlap. Then, in the expression for %:Q &. in T«.Nm.Y ow%
mode is represented by a Lorentzian peak of width y” and area (v\?/4)C\>. This determines the
wengts C. o |
: Aﬂmwnraoao positions can be found by noting that, if y” is small, then, & — oo and y M ln_o
when y - y. Hence, the mode positions y$”, where m labels the mode number, correspond to the

zeros of A (¥):
OGP =o0.
By analyzing the structures obtained with the N = 6 octahedral o_cm_ﬁwnrwm Ma ma:onmnm—.._.wn Mbmw
i i f “bars”, regions in which modes must lie,
shown in Ref. [84] that the spectrum consists Of I X must e, and
“ >, i i des are excluded. These regions suggest analogies wi e C:
B atoutate the sttt ing indi f(a) (do not confuse the scaling index
fractal set. To calculate the distribution of scaling indices, g ndex
i i i ted by Halsey et al. [88]. According
a with the polarizability), one can use the procedure sugges / . .
this wnoomm%no. one builds first a measure, M(q, .3 .|.m Mr_, EMN :ﬁﬂwm nwawmmﬂmr M:Mwo %m”. m"olﬂrw M”me
= , 8; = (4y); — y.) is the ratio of the wi y): bar ¢
@&MAMM .H—H_.Ma_wm,monudnm AWW\,MVWD, and g is the total strength of all modes lying in the E._m_wwn
(32, p; = 1). Then, one sets M(r,q) = 1, defining 7 as a function of g For each <w_=m g one finds
a&%.u ~dr(q)/dg and f(a(q)) = qa(q) + 7(q). The EMS%M\. gives m%mﬂwmm_m hﬂmﬂoe
cti i i on of .
= 1 — g) as a function of g with D being the Hausdorff dimensi 0 i
UQO_MMQM__\% mzomw showed [84] that the surface-mode spectrum for the ammnjcam recursive dﬁo%&
is a multifractal set and found the corresponding distribution, f(«a), of scaling indices. In particular,
they obtained Do =2 0.53. , )
oHMoa that the ooosoowﬁ of multifractality naturally appears iﬁm: nw.oamm ».oﬂw:wmm M MMMMH%MM:M»MW
i i t, different bars have non-triv
different ‘strengths C, (in terms of the Q..EQ set, : ; ons of
tion 5 that, in the case of an ensemble
i . in the measure M(q,7)). We will show in Section ; > a ;
Mﬂﬂ__m“m%moﬁ clusters, all modes contribute to the optical »cmoecmn éMr mc%wox_uﬁmwo_w %mn%w” wMM_nm“”
' ; is si ional to 8;)." Accordingly, the al
ie. have the same strengths and p; is simply proportion i 4
Mwoohwwwmmaa in terms of a spectral density of modes, p(w) (which possesses the scaling dependence

(4.29)
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with the exponent d, — 1; d, is called the optical spectral dimension). In this case, one should put
Dy = d, and the measure M (g.7) is finite only at q =0, ie. it is structureless (no dependence on g).

5. Scale-invariant theory of collective optical modes in fractal clusters

Below, we consider a method for obtaining the dispersion law characterizing excitations in fractals
for an arbitrary interaction. The consideration is similar to that presented in the paper by Stockman,
George and Shalaev [25]. In particular, this theory provides a good description of the optical spectra
of diluted clusters. (We will specify what we mean by “diluted clusters” in Section 5.4. The spectra
of original, non-diluted, clusters will be considered in Section 6.) The theory, which is based on
scale invariance, results in a dispersion law giving the relation between localization length and fre-
quency parameter. The corresponding exponents are expressed in terms of the spectral and Hausdorff
dimensions. The expressions obtained for the dispersion-law exponent are different for vibrational
(Goldstone-type) and dipolar (non-Goldstone-type) excitations. We also show that dipolar collective
modes, similar to vibrational modes, are strongly localized in fractals.

Dynamical excitations of fractals possess fractal properties, and their density of states and dispersion
law exhibit scaling behavior under certain conditions. Scaling of the eigenstate density, p, for the
vibrations in fractals has been introduced by Alexander and Orbach [5] in the form

pox @¥ (5.1)
where o is the oscillation frequency and d is an index called the fracton (or vibrational spectral)
dimension [5,6]. The dispersion relation for the vibrations of fractals (“fractons”) has the form [51:

o L0/, G2)

where L is the coherence length of the excitation. In the trivial limit (D = d = d), Eq. (5.2)
reproduces the dispersion law of a wave propagating with constant speed, @ oc L~!, with L as the
wavelength. In fractals, the coherence length, L, simultaneously plays the roles of wavelength and
localization radius (the strong localization hypothesis [5,89]). The dispersion relation (5.2) has been
proven in Ref. [76] from very general mode-counting arguments, independent of any model-based
considerations. However, it is clear 2 priori that Eq. (5.2) can only be valid for excitations of the
Goldstone type, which are characterized by the absence of a gap in the spectrum, and become running
waves in the trivial limit D — d. For non-Goldstone excitations in fractals (e.g., of the plasmon
type), one expects a dispersion law different from Eq. (5.2), in particular, possessing a spectral
gap for D — d. Such a law for dipolar excitations on fractals, first derived by Stockman and co-
workers [24], is different from Eq. (5.2). The problem of finding the dispersion relations for fractal
excitations has also been the subject of experimental studies [90-93].

The approach of Ref. [25] is based on the self-similarity of a fractal and the idea that collective
excitations of relatively large coherence length L are insensitive to the details of the fractal structure
at small scales. Thus, one can change the spatial resolution of a fractal structure, Ry, without changing
observable quantities. We choose the work done by the probe field as the quantity whose invariance
(with respect to a change of R,) may be used to obtain the required dispersion laws. Following
Ref. [25], we first apply the method to reproduce the well-known dispersion relation for vibrations
in a fractal, and then apply it to dipolar excitations.
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5.1. Scaling and dispersion laws

By the term “dispersion relation” we imply the dependence of the &mozé_c.o w of the interaction
operator, W, on the excitation coherence radins, L; thus, the @a@mmm_os relation rmm. the mo_.B.s. =
w(L, Ro). Scale invariance holds for the fractal excitation provided its coherence radius, L, satisfies

the inequalities
Ry« LK R,

where R, is the gyration radius of the cluster and R, is the ormamo.aammm spacing ?.#28: the =_MM8mM
‘monomers. These two parameters, together with the Hansdorff dimension, determine the number o

(53)

‘monomers in the fractal, N = Qﬂu\?vc. If the condition (5.3) is met, the excitation extends over

many monomers and is not sensitive to details of the fractal at m5w.= mnmmom. Hrmmomoﬁm a nrwﬁzmrn mww
the minimum scale should not modify the functional monu. of the aﬁ.@ﬂ&oa relation. To mee
requirements, in the usual way, w should be a power (scaling) ?:Q.-o: of h Ea. Ro. cluding R

We introduce the metrical dimensionality, m, of W: when all the _Eww.u dimensions AEosc m_uum ! mw
R, and L) are changed by the same factor, then w is changed m_,o_wo_doum:w to, mﬂw. om_. or e
vibrational model considered below, the dimension m can cm..&.ngg with m =0 r:._m a_am:n—
choice; for the dipolar model, m = —3. The orwam.o of w nomEE.w. m.non.. a or»:m.o Mm ooaa_.m_“onc n_wmk.
L (without changing R, or any other length) is given c« a :o:-n.aSw_ index which we denote by —«:
w o< L=*. Thus, in the scaling region (5.3), the dispersion relation has the form

- 54
w~ (L/Ry) “R}. (5.4)

i n L becomes large, w should become small; Ewnamo_.m., K V 0. In some simple
me_wmwﬁ“. mm%oﬁxﬁrmg be mmﬁm_.BEmamE&ﬁmow:% from the well-known decimation _M_.Mnoaw_d\ W,NP:.
For example, on the Sierpinski gasket in d dimensions, « = In(d +3)/ FN.. D=In(d + ”W_ ormr .

The main idea is to use the invariance of the work A mmnw by n.ro mm.E with respect to mw mmu

of the minimum scale R, (without changing any on_mun _Ewwm“..m Qmmowwwmwmvwomwwu”bwwqw”oﬁmm on
i i ifying a group of monomers entering a frac .
Moﬂﬂﬁﬂ-ﬂﬂﬂ.ﬁ N:MHMWR,N rmmmvawm called the n@:o_.Bm.Emmo: Rw:mmonﬁmﬁnu E.\rq.ﬂ.. .;ww Rnowﬂ:mm
ized monomers constitute a fractal which is characterized by the same critical _%a._nnmmmm EM Mﬂw_n al
fractal, though the strength of the interactions may o.rw.:mo” The necessary condition ﬂ. © work to
have a scaling form is the small magnitude of the dissipation. In what follows, we will as

this condition is fulfilled.

5.2. Vibrational excitations

We consider a fractal cluster consisting of N material wmnmo_.wm positioned mﬁ points ~.~_.,.~ ?M@mBﬁﬂ“
displacements d; of the monomers induced by an external driving force F; (i=1,...,N) obey

system of equations
*d; 24 — W&h . (5.5)
m%w = =2 " Tijp (dip — dig) — Ohha — Y 5= + .
\. .
i i ted Greek indices is implied),
Greek letters denote Cartesian components (summation over repea ; X S )
Wmmow characteristic frequency (of the order of the Debye frequency), T is the interaction matrix
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whose elements do not depend on the interaction strength (in the simplest case, Tiajp o 8,5 and is
unity for nearest neighbors and zero otherwise), wy is the restoring frequency which can originate
from interaction of the monomers with the embedding host medium (for a self-supporting fractal,
wp = 0), ¥ is a relaxation constant, and F, is the component of the weak (probe) force acting on
the ith monomer. Assuming the probe force to have the temporal dependence F o< ™, we can, in
a routine manner, introduce for each quantity the corresponding amplitude. Such amplitudes will be
denoted below by the same symbols.

‘We define the vector |d) in a 3N-dimensional linear space with components (ia|d) = d,,; similarly

we define corresponding vectors for other quantities. Then, the system of Egs. (5.5) can be written
as

(Z+W)|d) = |[ED), (5.6)
where
@? — o wy 1
=X X=——2, = w0 [E®)= priLoB (5.7)
and the operator W is determined by its matrix elements,
" ((e|W|jB) = Ty — w,c.MHn@. (5.8)
k

This operator is symmetrical and obeys the condition

> (ia|W|jB) = 0. (59

J

It follows from Eq. (5.9) that the homogeneous vectors 10a), with components ( ial0B) = 6,,N-172,
are eigenvectors of W, with zero eigenvalues. This is an exact condition for the excitations to be
of the Goldstone type. The homogeneous excitation is simply a shift of the system as a whole, and
brings about a gapless excitation spectrum with the excitation frequency tending to zero for L — oo.

We now introduce the eigenvectors, |n), of the operator W corresponding to the eigenvalues, w,.
Since W is a symmetric operator, all eigenvalues and components of the eigenvectors, (ia|n), are
real. The solution of Eg. (5.6) is expressed in terms of the linear response function e,

dig = MU @iapEig, (5.10)
J .
where

_ \~ Gajn) (n)jB)
San =3 (Z+wy (5.11)

n

From this expression and the completeness of the set |n), an exact sum rule [25] follows:
\ @ijapdX = 175;;8,p. (5.12)

The contributions of the uniform eigenvectors ( ie|0B) should be excluded from (5.11) since these
contributions correspond to the movement of the system as a whole, and not to the internal excitations.

]
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Thus, we put  # 0 in Eq. (5.11). The condition of orthogonality to the uniform eigenvectors rw.w
the form [76]

(5.13)
> (igln)y =0 (n# 0).

As a consequence of Eq. (5.13), the polarizability, Eq. (5.11), obeys the condition
> 0 (5.14)
hmc..b.m =,
J

This condition shows that the constant component of the probe field, E‘ (or F), vanishes from the

-solution Egs. (5.10), (5.11).

The work done by the probe field A (more exactly, the power of the external field dissipated by
the system) is given by

. 515
a=(2 228 p o), (5.15)

i als and (...) over space variations of the
...y denotes averaging over an ensemble of fract and - of
MMM”mAmﬁw. the observable quantity d;(z) = d;e"'+c.c., and similarly for F;( mv . MmEm the %Mm%vnoum
(5.7 G.E,v and the rotational symmetry of the cluster as a whole, we obtain from Eq. (5.

A== x{S ma,FF ) ),
@ — of -

(5.16)

where @; = laj,., and we assume a potential driving field; the latter means that the force F depends
ij = 3Qiajas .

i oordinate only, i.e. F; = F(r;). ) N ) )

os&ﬂmwﬁw _M:.wco field is applied, the fractal is characterized by an additional large scale distance:

i i aling of the work done by the field, we assume
field correlation length, L. To bring about sc: worl |
M.M: %_o coherence radius is much less than both R. and Ly (i.e. in addition to (5.3), we require

t MMW%W.;E in Ref. [25], the expression (5.16) for A can ultimately be transformed to

2

Slh G.:v
Z!Nunlszcc.
4 ENIQW__ Ly

where the density of eigenmodes, i.e. the number of eigenmodes per unit interval of X, is defined by
(5.18)
pX)=N"" (> 8(X—wp) ).
i . . .
Expression (5.17) possesses the property which is generally characteristic of Qo_MmR_V.:o.WM_SIJoH.
th wmm_n_ work tends to zero when the field correlation length becomes large. In M n..\. H:.E I %n mxomﬂo,
EM field becomes homogeneous and only induces a shift of the system as a whole; it can

i Idstone modes. ) .
EHWEM_mWW M_M—WMEEm region (i.e. L(X) obeys (5.3)), the probe field interacts with fractal modes

delocalized over many monomers, and a change of the minimum scale, Ry, of the fractal should
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not affect the work done by. the field. Hence, A in (5.17) should not.depend on R,. The driving
field frequency, w, obviously, does not depend on Ro. The restoring frequency w, also does not
depend on Ry: when some monomers are unified to 2 new (renormalized) monomer, their total mass
and restoring force are increased in proportion to their number. The excitation coherence Iength, L,

should not depend on R, either. Thus, taking the dependence N oc Ry® into account, we obtain from
Eq. (5.17)

Ry Xp(X) o RS, (5.19)

where the proportionality should be understood in the sense of the overall functional dependence on
Ro.

As suggested in a number of papers and confirmed by model calculations, in the intermedjate region
(5.3}, the density of states obeys scaling, which, taking into account the metrical dimensionality of
W and X, has the form

p(X) ~ Ry™|R5”

_&klu.

(5.20)
The index dy is called the spectral dimension. Substituting (5.20) into (5.19), we obtain the trans-
formation law

|X] oc RSP+ dx (521)

The probe field excites the resonant fractal modes, with w = X. Taking this into account and comparing
the power of R, in Egs. (5.4) and (5.21), we obtain « = D/dy and

|X} ~ (L/Ro)="/*Rp, (5.22)

This relation, with X as the independent variable instead of @ and the notation dy instead of d, is
the same as Alexander and Orbach’s law (5.2). We point out that the value of the critical index
dy depends on the definition of the critical variable X (see also bélow). Also, note that x does not
depend on the metrical dimension m.

Using (5.7) and expressing X in terms of frequency, we transform Eq. (522) to .
|® ~ wF] ~ (L/Ro) ™" u2Rs. (5.23)

In the long-wavelength limit (L — o0), we found from (5.23) that @ — . For wg # 0, according
to (5.23), the scaling law is

| — wp| oc L2/, (524)

For the case wy =0 (vibrations in a self-supporting fractal), we find from (5.22) and (5.23) that
X oc w?; in this case, it is natural to use w as an independent variable. Transforming the density of
states and using the equality p(w)dw = p(X)dX, we obtain from (5.22)

w oc L0/, (5.25)
where, as follows from a comparison with Eq. (5.2),
dx =d/2. (5.26)
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It is interesting to note that the presence of a gap, wo, _.g.:_a in a nrmwmm (by a factor 2) of the
exponent governing the dispersion relation, as compared with the “usual” gapless case, wp =0 (cf.
B vt s NN = D = d), the dispersion law (5.23) acquires the familiar form o =
(w3 + nwwv_\ %, where the wave vector k ~ L~! and _o.._ ~ uR3*™; this relation describes the different
branches of elementary excitations in condensed media. ) ] . .
Finally, we mention that, under certain conditions, fractons in a percolation cluster manifest multi-

fractal properties [95-97].

5.3. Dipolar excitations

Now we consider a model which describes dipolar excitations. In this B.oa.m_. a cluster consists
of polarizable monomers with the dipole interactions ggwn: Emﬁv& the mﬂS:w »._.@nz.m:Q . The
cluster is subjected to an external electric field, with amplitude E;™ at the site of the ith monomer.
The amplitudes, d; (i=1,..., N) of the light-induced dipole moments obey the system of equations

2y = B = Y (ialW|iB)dip, 62D
J

where Z = —X — id=ay ! and ey is the polarizability of an isolated monomer (not to be ooam_..ana
with the tensor components and with the absorption oo.n.mmo.mnac. Zoa. that hereafter X and & differ
(by a simple pre-factor) from the comresponding a.:m:ﬁ.:nm S:oa:n@a in AN.NC. .

The quantity W in (5.27) is an operator of the :mwﬁ.:&._o& dipolar interactions between particles
in a cluster. In particular, for the dipole-dipole interaction in the near zone (R, < A), we have

. (ro)a (ru)g] 1
Wiy = (i W]jB) = |8ap — 3522 | =,
ij 1]

(528)

i i i=j -di i he system (5.27)
ith r;; = r, — r; (WJ = 0 for i = j). In the 3N-dimensional <wm8n.mcwno. t
anin%m exactly EM form (5.6). (However, the meaning of the quantities is Q.m.m:.“:n the operator w
is determined by (528), Z=-X—18=a;" and E® is the external field, which is not _..o:.cnﬁm.:uon
as is the case in (5.7).) Thus, the linear-response expressions G.Ey and (5.11) are valid and the

polarizability of an ith monomer is given by

ia|n) (n]jB) . 529
Qiag = M ||||'|A EN_N=+ H\_M_\ . . A v
u.:

The solution (5.29) is similar to that given by Eq. (4.6), iEwr was obtained using the mmwoa‘m_
representation. However, in contrast to the muon:mh-_,o?mmmam:oa.ﬁ.raoar mn.. Am.nov. provides a
recipe for calculation of the mode strengths, c;, in terms of Qmm:?.:oconm of the interaction operator.
According to (5.29), the polarizability of a particle in a cluster is given c.w.%m sum of Ew vﬁmomioamm
having different eigenfrequencies, w,; and contributing to the polarizability with a weight given by
the product of the correspending eigenfunctions. ) i o : .

As follows from (5.29), the conventional Kramers-Kronig formula is valid in terms of X:
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Re ayap = 1, [ Imaiap(X)dx
7 X-x

—o0

where P denotes the principal value of the inte i i
| gral. Provided the ei envalues, w,, are
decay constant § is positive, other exact relations hold [24]: ® ’ real and the

N oo o0

= \ Mo q(X)dX = 6,5, P \ Rea,5(X)dX =0, (5.30)
and

P \55&5&?9 (5.31)

Note that the solution ( 5.29) of the coupled-dipole e i
. ) quations (5.27) and the sum rules (5.30
G%hv. Enwmnuanm, and valid for arbitrary clusters (fractal or non-fractal). ( ) and
e work done by the field has a form similar to Eq. (5.15 with the di iti
by the exisions hots B q. (5.15), with the difference that it is performed

A=20 () Ina;EO(r)EO*(r) ). (5.32)
[

This owenommmoz is different from its counterpart (5.16) for the Goldstone ( vibration) excitations

Gn.mmwm Goldstone excitations, in the case of dipolar excitations, the polarizability does not obey .5@
oon&no% (5.14). Thus, the relevant expression (5.32) for the work does not vanish for the uniform
field B, Such a field corresponds to the excitation of a cluster by electromagnetic radiation with
the wavelength much larger than the cluster size, R.. In this case, the work (5.32) becomes

A=2wN|E®PIna, (5.33)

where @ = (3N) ' T, a00).

mﬁ.oo_c‘:mnw and co-workers formulated the scaling hypothesis [24], which states that in the inter-
mediate region, Ry < Ly < R., the absorption contour Im a(X) possesses scaling and should have
a power-law dependence on the “frequency” parameter X:

Ima(X) ~ Ry(R}X|)%, (5.34)

where d,, which is called the optical spectral dimension, is the counte i i

wh s call N art of th t]

d in the case of vibrational excitations 0<d, <), ® ¢ spectral dimension
Assuming |X| >> 8, we obtain from (5.29)

T T . .
Ima(X) = WBCO + .“mq_.ia?E_:X:_\vaAkl wa)), (5.35)
where the. density of dipolar collective modes has the form of Eq. (5.18) and w, are the eigenfre-

a:_nzomnm of the dipolar operator W. The density of dipolar eigenmodes satisfies the following sum
rules:

e
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\inxu 3, \xﬁxv&muﬁs\uo. (536)

Note that the first term in (5.35) satisfies both sum rules for Ima, (5.30) and (5.31). Corre-
spondingly, the zeroth and first moments (in terms of X) of the second term in (5.35) are exactly
zero. In the scaling region, this term is expected to have a power-law dependence. Thus, if the scaling
region gives the dominant contribution to the sum rules (5.30) and (5.31), the second term in (5.35)
should be small after the averaging and [24]

p—y (537)

T
Ima(X) = W\VCC ~ Rj|R3X

According to (5.37), all eigenmodes contribute to the absorption with equal weights and, therefore,
the absorption and the density of the eigenmodes are described by the same scaling dependence.
Note that although this result is approximately valid for random diluted clusters, it fails for original,
non-diluted, clusters (see Section 6). This is because the assumption of the dominant contribution of
the scaling region to the sum rule is not valid in the general case. Besides, symmetry properties of the
eigenmodes and related selection rules can be important for non-diluted fractal clusters (see Section
6). However, we first assume that (5.37) is valid; spectra of non-diluted clusters, when (5.37) does
not hold, will be considered in Sections 6 and 7. )
From (5.33) and (5.37), we obtain the required expression for the work,

A WSEZRNV. ) (5.38)

Using the scaling formula (5.21) and the relation N = (R./Ry)”, we amive 290 conclusion that
the A-scale-invariance requirement applied to Eq. (5.38) leads to the transformation law, |X|
wwu+§x< =1 \which, after comparison with (5.4), gives « = (D +m)/(dx — 1). Accordingly, the
dispersion relation is .
I\ ~(DH+m/(dx=1)
;)
Eq. (5.39) clearly differs from Eq. (5.22) for vibrational excitations. Note that now x does a.mua:n_ on
m. Eq. (5.39) gives X as a function of L and, through the dependence X = —Re o ! (@), the relation
between the eigenfrequency w and L. The last relation (distinct from X(L)) does not necessarily
scale. For the optical field, the interaction is given by Eq. (5.28), so that its metrical dimension is
m = —3. In this case, the dispersion law (5.39) becomes

huals\:xé

_x_zAlv %. a.§
Ry

where d, is the notation for dy in the dipole case [24,25]. This formula can be also rewritten as

e o

.
0

Ly ~ Ro(R3|X]) —1/C-D), (5.41)

As follows from (5.41), in the vicinity of the center (R3|X| < 1), the eigenmodes are delocalized
over a large part of a cluster (Ly > Ry), whereas towards the wings of the absorption contour (at
R3|X| ~ 1) the modes are strongly localized (Ly ~ Rp). ’




J
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—,mmw.” menmw:ammnwﬂw cmﬂwnwwg:& pswurwm a pole, and in its vicinity X ~ K (w—wy), where wy is the
. = const. For example, for a two-level syst a
where d,; is the dipole matrix element of , iti e monoeonetant K = ol
here the resonant tr; i i in the
vicinity of the resonance, Eq. (5.40) becomes [cf. Eq. MMENMWUM_ i the monomer. fccordingl, in the

L —{3-D)/(1~d,}
[0 — wo ~ Alv

R R3|dyl* /5. (5.42)

Note that the scaling condition (5.3), when using (5.41), acquires the form

N~G/P=D/G=d) o R31%]| < 1. (5.43)

Thus, the scaling region is restricted to smail 1X], i
s, X|, i.e. occupies th i
addition to (5.43), there is another necessary oo__anz mo_._u“”b:m eenter of the absorption band. In

|1X] > 8, (544
A44)
é—wun_.. is ooinmac_m.izw (5.43) only if the decay constant is small (R« 1)
Lué we c:.omv\ discuss the physical origins for the difference in dispersion relations for th
?M mmBm considered. By the choice of the spectral variable, Z = —X — 18, the basic o@:w&oﬂ auﬁ Mo
and (5.27), for the two problems are reduced to the common equation (5.6) in the uZ.&EMM.mmorww

< ]
ector space. However, there are two differences between the two problems. First, for vibrations

the field E, which appears in the basic equation (5.6), is not the physi

Wﬂ”rowm:mnoﬂm. it is. wonon.a.. for vibrations, the interaction obeys Eﬂ MMHM%M&BMMMMMMMJWMM%
whie mo_w..ﬁmum M“z ME n% oo:&:on.m (5.14). As a result of these differences, the expressions for the .mm_m
P QoEmﬁoz%S . M:..m are different [cf. Egs. (5.17) and (5.38)). In particular, for vibrations, as
o S roimaMo_Ew.:wP the field work (5.17) tends to zero in the limit of constant exciting m,nE
Emﬂ e &mmn_.mmos _w,ém _M mmw_w% M”M nmwmw MQ. :M:-.Qo_%ﬁouo excitations. Therefore, it is not surprising
corresponding field-work expressions, m._d wm%ﬂwﬂ_mg from e scal-imarisncs soqeirmments for the

5.4, Scaling and localizati 3 i in di
S zation of collective dipolar modes in diluted fractals. Results of numerical

In this section we consider the results of i i
c numerical simulations of optical i i
M_.._,MH.MMMW anwawﬁ&v clusters. A diluted cluster is obtained by random ME%%HMW MM”“VMMMM_M_W“H
and successive reduction in cluster size, so that the avera i

. ) ; us 3 ge distance bet

Moo“.mwwo” mHMwM..mHEm mE:ra. Wm:E the original cluster. This procedure leads to WE@”MMMM MMMHMM”
1stances while the global fractal morphology of the cluster remai

. . . . BEW »H
mwoommom.:&. each monomer in a cluster consisting of a large number of particles —“M me%w.mm EM:
__m place, with Eo._umc:_q B .AA 1, or removed from the fractal, with probability 1 — 8. Th o n“__
m: cmﬂn as a whole _w muoacnma in size by a factor (1/8)'/?, The power-law behavior of Sm.oonwwa. .
netion, g(r) o< r°=3, holds for the diluted fractal down to smaller distances ro = BYPR, « %z
> - 1] 0~
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Note that the model of diluted clusters can describe some real systems, such as metallic nanoparticles
in a fractal (e.g., polymer) host.!

Two types of fractals were studied [26]: random-walk clusters (RW), with D = 2 and Ry =
a/(6)'7, and cluster-cluster aggregates (CCA) [98], with D = 1.78 and Ry ~ a/3, where a is
the lattice period. All clusters were subjected to 32-fold decimation, ie. B ~ 0.03. (As simulations
showed, the further decreasing of S does not affect the spectra.) The calculated values were aver-
aged over a large ensemble of clusters (~ 10%). The polarizability was computed from (5.29) by
diagonalizing the matrix (5.28).

In Fig. 62, the quantity Im « for diluted cluster-cluster aggregates (DCCA) is plotted as a function
of X for two different values of 8: 8 = 0.001 and & = 0.005 (the number of particles in each
clusters was N = 64). The results are presented in units, where Ry = 1. Clearly, there is strong
inhomogeneous broadening associated with the interaction of particles. The resultant spectral width
is much larger than & and, accordingly, there is no dependence of the spectra on 8. The scaling
properties of Ima and p are analyzed in Figs. 6b and 6c¢. In accordance with (5.37), both quantities
show approximately the same scaling, with the exponent d, = 0.3+0.1. (Note, however, that because
of the strong statistical noise in the simulations, the obtained scaling was disputed in Ref. [34].)

Similar results, with d, = 0.4 £ 0.1, were obtained for the RW clusters; these simulations were
performed for N =128 and N = 256 [26].

Note that the scaling behavior obtained near the “critical” point, X = 0, has a similar physical nature
as the scaling in percolation systems (see Section 2). In both cases, long-range fluctuations near the
critical point (X = 0, for the optical absorption by diluted fractals, and p = p,, for a percolation
system) result in the scaling of observable characteristics.

We now consider in more detail the predicted localization of collective dipolar modes in fractals
(see Eq. (541)). It is worth noting that localization of dipolar excitations in fractals is a non-trivial
fact since in “usual” media (D — 3) dipolar excitations are typically delocalized.

In Fig. 7a, three different dipole modes of the fractal are presented [29]. Each mode is determined
by a certain value of the dimensionless spectral variable, R3|X|(Ro = 1). The cluster was simulated
using 2d cluster-cluster aggregation (CCA) [98]. The points in the figure correspond to the centers
of particles touching each other and forming the cluster. The radii of the circles drawn around the
particles give the values of dipole moments induced on them. These dipole moments were calculated
by calculating the eigenvectors of the interaction operator, W, and substituting them in Eq. (5.29).
As seen in the figure, the dipole modes are localized.

Fractal clusters resulting from cluster-cluster aggregation are random. Spatial localization of dipolar
modes and the corresponding local fields can be also obtained for geometrically ordered fractals. Figs.
7b and 7¢, showing the distribution of local field intensities for the Viscek fractal, also indicate the
Jocalization. The symmetry breaking results from the incommensurate structure of the light field with.
respect to that of the cluster. Specifically, it is the introduction of the two vectors E® and k (that
do not coincide with the fractal axes), with the tensor character of the dipole-dipole interaction, that
breaks the symmetry. .

The mean coherence length, Ly, is defined as [25,29]

I The basic hypothesis formulated in Ref. [24] was that the dilution does not affect the optical properties in the scaling
region and the optical excitations of the original and diluted clusters are the same. In the next section we will see that
although these properties are qualitatively similar, there is also a significant difference. :
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LA(X) = (X, 0(x — wi) {3 (iajn)2r? — [3>:(Galn)?r,12})
(32, 6(X —w,)) ) (5.45)

This definition has a clear i
q quantum-mechanical i
functions are normalized, Yilialn)?=1). veal analogy with

(iajn) as the wave function (the wave
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(a)

X=0.22 @

Fig. 7. (a) Localized dipole modes on the fractal. (Taken from Ref. [29].) (b) and (c): Local field intensity of the
light-induced dipole modes on a Viscek fractal for s-polarization and X = —0.1 (b) and X = ~0.25 (c). Taken from
Shalaev et al., Physica A 207 (1994) 197.

We have examined the diluted cluster-cluster aggregates [29], with the 32-fold decimation (8 ~
0.03) has been used.

The localization length, Ly, in diluted cluster-cluster aggregates is shown in Fig. 8 as a function
of the dimensionless spectral variable R3|X|(R, = 1) for both positive and negative X [29]. The
number of particles in each diluted cluster is N = 128. The calculated points lie along straight lines,
with the slopes —0.53:0.07 and —0.56+0.06 for X > 0 and X < 0, respectively. The corresponding
value of the optical spectral dimension is d, = 0.33 & 0.08, in accordance with (5.41). This value
agrees with d, = 0.3 £ 0.1 found from the density of states and the absorption (Fig. 6b,c) [26].

Thus, strong localization of dipole collective excitations occurs in fractals. The localization results
in very high local fields leading to huge enhancements of resonant Rayleigh [26], Raman [28] and,
especially, non-linear scattering, ¢.g., degenerate four-wave mixing [30,99,100]. We will consider
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for diluted bailistic cluster-cluster aggregates (D a 1.9). ._.mwo% Mov”ﬂm“mnﬂwwﬁnmnno .&e 035 The simulaions are made

cmwmcﬂ Mbrgowa owmo»_ om.mmoa in mb_rv.»&o_n aggregates (see Section 7).
! oM MM_M MM:M_.% mwnco?.éa _uno.nw. oo.zmann optical mwo-gmzomom.amomw (OFID) in fractals
vl o cond Ma_o%m, mvm:ﬁ” .mm_m.mEEN:Q of mnwﬁ»m_ clusters leads to scaling in the time aoER:.
pprin et 8 wm udied w_:EEmm.,om the sol-gel transition probed by light scattering and reported :.w.
roemation of % ~m7 wé :jm .aooww. om. Em‘ intensity autocorrelation function [101). Fractal time
S hoen MMM: M a wm_n”_m_.EB;MH Q.mﬁ.c::.oa of the eigenfrequencies [19]. Shalaev and Botet
OFD 132, g in the mode distribution (see Eq. (5.37)) can result in the scaling of the
>m. shown in Ref. [32], a wide-band excitation, with E© (©) i
Wﬁ%w a @M.QE oE.man .n.mmia in .Ew. OFID of mro moum.- %Mv%numaomm%»momxrﬁﬂzw olmo.:_wSHm
ere ap is the u.o_mdwmv_:Q of an individual oscillator (with wq bein, ﬁw o1,
Pttt is pven 0 g the resonant frequency) and

F(0) = (13" exp{—idut} iajny (n]ja) ).
nij
The frequencies $2; = w, —wqy = Lo, B2 i )
° 5= o = me.oxs:e_ characterize the shift (with respect to th
%mw me.uo_maﬁ_ with Ew nth mode. (As above, w, are the &mgn.ﬁ:o:omwm of Emo%wwhﬂ_ﬁ?w% MMEQ
ors showed Emg ﬁ.ra OFID has no 4 characteristic time in the scaling domain, so that 20

P(8) oc 174 . .
(5.46)

11!
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The simulations were performed for ballistic cluster-cluster aggregates (D = 1.9). The clusters
were subjected to the dilution with 8 = 64 so that after the dilution each cluster consisted of N =512
particles. The results were averaged over an ensemble of 100 random clusters.

In Fig. 9 the results of the simulations of optical free-induction decay, f,(#) /N, are shown. At
t =0, one has f = N, i.e. all the dipoles are in phase. For ¢ > 0, the quantity f1(¢) decays, exhibiting
a power-law dependence, o< t~*, within a certain time interval (the scaling region). For larger times
f (1) falls to zero, reflecting the complete dephasing of the dipole moments (not shown in the figure).

For the scaling region, the value —0.55 was found for the exponent in the power-law dependence of
F1(¢). In Ref. [33], the value dj = 0.53:0.1 was reported for the ballistic cluster-cluster aggregates.
Thus, the exponent found from the OFID simulations coincides with —dp, within the error interval.

Below we consider optical properties of original (non-diluted) aggregates of particles.

6. Optical properties of small-particle aggregates

In this section, following Ref. [102], we consider general solutions of the coupled-dipole equations
for small-particle aggregates with the exact operator for the dipole interaction (including the near-,
intermediate-, and far-zone terms). We discuss the results of simulations for original (non-diluted)
clusters consisting of large numbers of particles, from 500 to 10000. It will be shown that in
contrast to diluted clusters (see Section 5), the spectral dependence of absorption by original clusters
significantly differs from that of the density of dipolar eigenmodes. This indicates the importance of
symmetry properties of dipole modes in absorption by random fractals. Numerical simulations also
demonstrate a significant difference in absorption spectra of fractal and non-fractal composites.

6.1. Coupled-dipole equations and optical cross sections

_ We consider the interaction of a plane electromagnetic wave E(r,t) = E® exp(ik-r—iwt) with a
cluster of N paiticles (monomers) located at points ry, ..., ry. As above, the monomers are assumed
to be spherical with diameter much less than the wavelength of light. The particles are polarizable,
with the light-induced dipoles given by d; = a,E;, where E; is the local field acting on the ith particle
of isotropic polarizability a. The local field at any point is a superposition of the incident wave and
all secondary waves scattered by the dipoles. Thus, dipole moments interact with each other and with
the incident field, and obey the coupled-dipole equations (CDE):

. N
dig = g |EQ exp(ik -r) + Y ' Gap(ry)ds| (6.1)
j=1
where the time-dependent term, exp(—iwt), is omitted, r; = r; — r; and 5" denotes the sum over
all values of index j except j = i. The interaction tensor G,g is defined as (cf. Eq. (5.28)):

e, (62)
.

Gop(ry = TQJ@& + B(kr)
6.3)

A(x) =[x~ +ix~% — x 3] exp(ix),
(64)

B(x) =[—x"" —3ix~2 4+ 3x7] exp(ix),
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where a and B denote Cartesian components. Summation over repeated Greek indices is implied.

We introduce a 3N-dimensional complex vector space C3¥ and an orthogonal basis |ia). Vectors
|d) and |E) € C3¥ and their components in this basis are (ie|d) = d;, and (ia|E) = E;, =
EQ exp(ik-r;). Similarly, we introduce a 3N x 3N operator V, which in the Jia) basis has components
Q&E&mv =—Gop(ry) where G.g(ry) is defined in Egs. (6.2)-(6.4). Then, Egs. (6.1) acquire the
form of a matrix equation:

(Z+W)a) =|E), (6.5)
where Z = 1/a,. Note that Eq. (6.5) is equivalent to Eq. (5.6) witha significant difference, however.
In contrast to W defined in (5.28) and describing interaction in the near zone only, the operator V
includes the near-, intermediate-, and far-zone terms and it is symmetric but not Hermitian, Thus,
Egs. (6.1) and (6.5) are exact and describe the dipolar interaction in the general case.

The solution of Eq. (6.5) has the form [102]:

_mHE) 1
=3 (Aln) Z 0, (6.6)

n

where v, are the eigenvalues of ¥ defined by 35 = Uy|n) and the “bar” sign denotes complex
conjugation of all components of a vecior. Thus, if [n) is a column vector, ( 7] is a row vector with
the same entries as |n). Although the |n) basis is not, in general, orthogonal it can be shown that
(An)=0form # n [102].

In the ia) basis the solution (6.6) acquires the form (cf, Eq. (5.29))

A (ia|m) Am_.\.hvm.\.m 1
o = M (X (Rlfa’) (el |n)] Z + 0, 67

Formulas (6.6) and (6.7) indicate that, for an arbitrary collection of N interacting particles, there
are 3N eigenmodes with resonant eigenfrequencies defined by Re(Z) + v, = 0. The weight with
which a mode contributes to the resultant optical response depends on the scalar product (A|E) and,
thus, on the symmetry properties of the eigenvectors In).

Once the CDE (6.1) are solved for dipole moments 4, extinction and absorption cross sections
(o, and o, respectively) can be obtained from the optical theorem | 102-1047:

N
0, = 4mwk|E®| 21y M di- B exp(—k-r;) = hi«_mév_lwbaa_mv, (68)
i=]
N
Oa = 4mkE®| 2y, 37 1d,* = 47k EO) 2y, (dd), 69)
=1
where
Yo =—Im(Z) INN%\w (6.10)

is a non-negative constant characterizing the absorption strength. (The scattering cross section o, is
defined by o, = o, — 0,.) Note that each term in the sum (6.9) characterizes absorption by a single
monomer; however, individual terms of the sum (6.8) have no independent physical significance,
since scattering (and, therefore, extinction) is in general a collective phenomenon,
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If clusters are much smaller than the wavelength of the incident wave and Srvv 2K%/3, ﬁron.“zm %
i ic limi i i i trix [105]. This means that we can omi

use the quasi-static limit for the dipole interaction ma { : > o
ix) i +ik - r;) =1 in formulas (6.1) and (6.8).

, 1/x2 and exp(ix) in Eqgs. (6.3), (6.4) and put exp( -1y 1 (68)
,&M &M below Emﬁnoﬁmmozm W and w, (similar to the notations of wmuoco: 5) for :..o quasi mSM_n
limit of the interaction operator, V, and its eigenvalues, v,. After averaging over the orientations of a

cluster as a whole the extinction cross section is expressed as

6.11)
o,=4wkNIma, (
where -

a=(1/3N) > Trladl, .
and al} are related to d;, via

y (6.13)
du=) aBED.
B

The d;, are to be found from the solution of (6.1)-(6.4). Thus, with the trivial pre-factor 47kN, the

incti jon i i to Ima.
extinction cross section is proportional o ~ .
" We also define three normalized vectors, one for each direction a = x, y, z as follows:

1 .
=— ia).
i) = —= M..u
Then, it is easy to show that

_ §_5§_§ 8.5
a= Aﬁa 1|I$\+N ﬁnv NM..U Qm._+§_ .

The basic formulas (6.6)-(6.14) presented in this section will be -applied below for numerical
i i f optical properties of fractal composites. o

m_ﬁwc%WWoA%wv Bdumwmﬁ& in the sense that they place no restrictions on the m.oMBaa MMonMw

aggregates. In particular, the system of Egs. (6.1) can be applied for finding the optical respo

ate of particles.
! mﬂmﬁmemm:MMQ ==E%aow_ simulations for a number of ooawwww?ma“_,wﬁa &MM&W%MMWMMMMM M“n
i i mall-p .
- . Below we briefly describe the computer mo: els used for s . .
:ommﬂﬂooﬁw” Mm_mmmﬁan.o_smﬁn aggregates (CCA) were simulated using 2 well-known numerical m_moﬂﬂ—““
(see, for example, Ref. [98]1). The fractal dimension of CCA __m WR w.awmv. mﬂw EWM “MMMM_ QMMMQ_W
. e i i the particle diameter). We
~ a/3 where a is the lattice period (equal to 4 ar us
Wmemna_uﬂ\om of CCA consisting of different numbers .Om umn_o_mm.“.z = 500, :MMO and %MOMW ”M Mm
that the model of CCA provides an excellent simulation of empirically oc.maz aggreg, s of metal
articles in solution [106]. In this model, encounters of _.E._moB_« walking vw:_oﬂo.m resu an el
Mnow?m together, first to form small groups, which then »mmammw into uﬁmmﬁ_. ?%MM%MM% EM%B“
imula including Witten-Sander aggregates

We also simulated other types of fractals, inc 1g Witte ; ) adom

i - ed cluster-particle aggregation an

tes (RWA). WSA result from diffusion-limit:

mewnammwmﬂmwmwwcv ~ Nv.u (see, for example, Ref. [107]). RWA were generated based on the model
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ommn_m.%om&cm_.m:moaiawmwSnmnmoB_&EocmmozE BmmommammURH.q‘d.aﬁm}émacE:
on a simple cubic lattice while the RWA were off-Iattice. ’

To compare fractal and non-fractal composites, we also simulated a random gas of particles (RGP)
and a close-packed sphere of particles (CPSP). While RGP is a very dilute system of patticles
randomly distributed in space, CPSP represents a dense (but still random) system of particles. In
both cases D = d =3 and the correlation function g(r) is constant. The particles were assumed to be
hard spheres. To provide better comparison with CCA, the RGP was generated in a spherical volume
that would be occupied by a CCA with the same number of particles; this means that particles in
CCA and RGP fill the same volume fraction, p (p was small, p =~ 0.05 for N =500.) In contrast, a
fairly dense packing of spherical particles, with P =~ 0.44, was used for CPSP.

To solve Egs. (6.1) for the aggregates described above we used different numerical methods:

diagonalization of the interaction matrix [24,26], the conjugate-gradient method [103], and the
Lanczos algorithm [108,109].

6.2. Optical properties of small-particle composites in the quasi-static approximation

We discuss here linear optical properties of small-particle composites in the quasi-static approx-
imation. General properties of the solutions of Egs. (6.1) in the quasi-static approximation were
considered in Section 5. Here we recapitulate some formulas that are relevan
numerical results.

In the quasi-static approximation, the interaction tensor W does not depend on k = w/c, and
the only dependence of Ima on w is through the monomer polarizability ay. As in. Section 5, we
introduce real, X, and imaginary, 8, parts of Z = 1/ay so that

Z=1/ag=—(X +i5).

t to the subsequent

(6.15)

Note that solutions of the CDE can be expressed in terms of X and & for an arbitrary form of the
polarizability, a,. Alternatively, defining oy, one can always specify the frequency dependence of the
spectral variable X and decay parameter 8. Thus, the solutions of the CDE, expressed in terms of
X and &, have an universal character, while their specific frequency (or wavelength) dependence is
determined by the corresponding frequency dependence of @ = ag(w) (which, in general, depends on

the specific particles aggregated into a cluster). For example, in the vicinity of an isolated resonance
the polarizability can be represented as

Rw,
(wo — @) —il”’ (6.16)

ap =

where wy is the resonance frequency of an individual monomer, I” is the resonance half-width, and
@n, R, are the characteristic excitation frequency and geometrical size of a particle,
particular, in a two-level model, RS,w,, = |dy,|? /h, where dy, is the dipole moment of the transition.)
Then, X = R;*(w — wg)/w,, and 6 = R*(I'/w,). In the next Section we consider X and & for
another important case where the particles are dielectric spheres.

As follows from Eqs. (6.10) and (6.15), the decay constant & is related to y, by 8=y, + 243 /3.

Since we assume strong absorption, i.e. 2i° /3 < y,, the approximation § = Y. is valid within the
precision of the quasi-static approximation.

respectively (in
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Fig. 10. Calculated absorption spectra, Im a(X), for cluster-cluster aggregates (CCA) cc
particles, N = 500 and N = 10000.

Fig. 11. Calculated absorption spectra, Ima(X), for various fractals consisting of >Mw = 500 particles: cluster-cluster
wmmw.amm.ﬁm (CCA), random-walk aggregates (RWA) and Witten-Sander aggregates (WSA).

As was shown in Ref. [24], the exact property of the CDE solutions in the quasi-static w.v_unnxm-
mation is

(6.17)
N7y |df = [E@PImals.

i 6.17), we conclude that in the quasi-static
i t count Egs. (6.8)-(6.13), (6.15) and ( ) !
M.Mwmwmwﬂ.wmown the oxnm_onos and the absorption cross sections are mmwm._w_ Bma M”.m Hmwmmmmwwm MMMM
jon i y i - tering cross section, the first non-
section is zero. In order to obtain a non-zero scat c by
i i i ined, which turns out to be of the order o Ya)Oe-
to the quasi-static solution must be determined, e
ds on w. However, we first present our r
In general, the decay parameter & aouma. ] / A ). As wis
i = the case, in particula, for a two-level sy ]
of X = X(w), assuming that 8 = const (this is 2 B o v they. e devermined
i bove, in terms of X, the.spectra exhibit a E:<o_.m. el i / :
:M::m:nmmwawwﬁm morphology, and do not depend on material properties. Zwﬁoam_b %_.ovanwmwn“
wcowo_‘mmnw and the corresponding A-dependence for aggregates of metal particles will be cons
i i m.m- . . . .
" MMUMMM:EW& below are given in units such that the diameter o.m a wmn._&m ?@W&aﬂ SoWMmWManM
period for lattice clusters) is equal to one, a H.H. AZQ@ that in mwocou_m.m‘mé MM@>€M= nsidered
scaling properties of diluted fractals, different units, with Ry = 1, were used; for - ,wm %u et mop..
one has Ry ~ a/3). In the calculations presented here the value Mm ﬂa aanmw%w_”.md_h» :M S0 N -
isti 10000 particles, for which we us e ~ 0.2,
all clusters except the ones consisting of » for e e o
i i ealizations for each type of clusters, D
Its of simulations were averaged over H.o random & clus
”mwcﬂwooo particle CCA, where the averaging was va_.mom._woa MMM 4 .M:MMMHMMM_HMMMMW ¢ partiles
i ion of X is presented for wil les,
oo 102, Cohe calou i i 0000-particle CCA were performed by using
= d 10000 [102]. (The calculations with the 1 -particle | ere : :
Wn ﬁmnmpmw%m m._monnzmu [108,1091.) The absorption Im a(X) exhibits little «E.E:on ,ME ~M H WWEM\M%
the shape of the function Im a(X) is much more complicated than for diluted CCA (cf. Fig. .
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Fig. 12. Calculated absorption spectra for non-fractal 500-particle aggregates: a close-packed sphere of particles (CPSP)
and random gas of particles (RGP).

The absorption Im a(X) for the diluted CCA (DCCA) has one maximum near X = 0 and is nearly
symmetrical. For the original CCA there are at least 3 well-pronounced maxima significantly shifted
from X = 0, and the symmetry is broken. These differences in the spectra of diluted and original
clusters arise from the fact that the process of dilution does not conserve the local structure of clusters
(although, the global fractal morphology is conserved).

Note that the exact properties for the first two moments of the quasi-static solutions (see Eqgs. (5.30)
and (5.31))

\?Ecc =, \x? (X)dX =0

hold for the functions shown in Fig. 10; the higher odd moments of Im a(X), however, are non-zero.

The three-maxima structure holds for various types of fractal clusters as can be seen from Fig. 11
where Ima(X) is plotted for different 500 particle fractal clusters, CCA, WSA, and RWA [102].
However, there are shifts in positions of the maxima for different types of clusters (especially, for
positive X). For all fractals considered, there is a large inhomogeneous broadening; the absorption is
reduced only for |X| > 5 (while the homogeneous half-width & is very small, 6 =0.1).

The spectral dependence of Ima(X) for trivial clusters (D =d =3) is very different from those
for fractals [102]. In Fig. 12, we plot Im a(X) for RGP and CPSP with the same number of particles,
N =500. Both spectra are nearly symmetrical and narrow (the half-width is & 58 for both.) Thus, in
contrast to fractal aggregates, such clusters do not show large inhomogeneous broadening. (In fact,
for a ~ 0 and N — oo one anticipates that the spectra in both cases will be similar to that of isolated
spherical particles.)

Thus, dipole-dipole interactions in fractals, in contrast to non-fractal composites (sparse, like RGP,
or compact, like CPSP), lead to significantly larger inhomogeneous broadening. (In terms of the
optical wavelength, the eigenmodes of silver CCA, for example, span the visible and infrared parts
of the spectrum, while modes in non-fractal silver CPSP and RGP are positioned in a narrow range
between approximately 350 nm and 450 nm.) This results from the fact that, for fractals, the dipole-
dipole interaction is not long range, and therefore most of the eigenmodes are localized in some
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region of eigenfrequencies (a) and, separately, for small negative (b) and small positive (c) values
of X [102].

The point X = 0 can be considered as a special point in the spectral contour. In the range —1.4 <
X £ —0.7, the function Im & increases with increasing X, approximately following the power-law
dependence, Ime oc |X|™*, with s = 0.34 + 0.01 (see Figs. 10 and 13b). In the region near X = 0,
the rate of increase becomes significantly smaller (see Fig. 10). The absorption again increases in
the range 0.4 < X < 13 as a power-law function, Ima « X', with ¢+ = 0.11 + 0.01 (see Figs. 10
and 13 ¢). Qualitatively similar behavior for small |X| was also obtained for RWA and WSA clusters
(see Fig. 11). We note that such behavior resembles the dependence of conductivity on p — p, in the
vicinity of the percolation threshold p, (see Section 2).

The power-law dependence of the absorption near the “critical” point X = 0 might be due to scale
invariance, similar to the metal-insulator transition in a percolation system. However, despite the fact
that power-law dependences can be deduced for small regions near the center X = 0 (see Figs. 13b
and 13c), it must be noted that these regions occupy a very small part of the whole spectrum (= 15%
in terms of X). (Therefore, we conclude that convincing evidence of scaling for non-diluted fractals
was not observed in our simulations.)

Note that for RWA (both original and diluted) the scaling Ima o |X|~(+2/ for large |X| was
reported in Ref. [34]. The exponent 1+ D/3 is in agreement with that predicted by the binary theory
[22,24].

Next we discuss the density of dipolar eigenstates, p(X) = (w/3N)dn/dX, where dn is the
number of eigenvalues in the interval 4X. The coefficient /3 was chosen so that p(X) has the same
normalization as Im a(X):

\eccmxuﬁ

(This definition differs by the factor /3 from that given in Section 5; cf. Eqs. (5.18) and (5.36).)
Figs. 14a and 14b show the density of eigenstates p(X) and Ima(X) for 500-particle CCA and
CPSP, respectively [102]. It is apparent from Fig. 14a that the distribution of eigenmodes in CCA
is not symmetric and differs significantly from Im a(X). This implies that selection rules are of
importance and the density of eigenstates itself does not determine Im a(X). Thus, the conclusion
of Refs. [24,25,34] that Ima(X) =~ p(X) is not correct, in general, and different modes of CCA
contribute to Im a(X) with a different weight, in contrast to DCCA. The greatest difference in Ima
and p is near the point X = —1. While p(X) has a maximum near this point, Im « has a minimum
there. (It is worth noting that a pair of monomers separated by unit distance has an eigenstate with
w = —1 which is antisymmetrical (total dipole moment zero) with polarization orthogonal to the line
connecting the monomers [105].)

As follows from Fig. 14b, the difference between Im a(X) and p(X) is especially large for non-
fractal CPSP. This result was anticipated for the following reason. For a continuous dielectric sphere,
there is only one dipole eigenstate with non-zero total dipole moment (i.e. the selection rules are
of great importance); since the CPSP can be considered as a discrete model for such a sphere,
we conclude that selection rules are important in CPSP. Thus, despite the fact that our calculations
demonstrate the significance of the selection rules for CCA, their role is not as important as for
the case of non-fractal aggregates, such as CPSP. In particular, as follows from Fig. 14a, almost all
eigenmodes within the interval |X| < 5 contribute significantly to the absorption.
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Fig. 14. Spectral dependence of the absorption, /ma(X ), and the density of dipolar eigenmodes, p(X), for 500-particle
CCA (a) and CPSP (b). : . . o .
i ization length, L(w,) = L,, characterizing a acm&.mﬁmz.o eigenst:
?MW:M:W_ bw%mﬂmﬂmwmﬁw MMM Nﬂ__xv vector om the onron.ondw_ basis ._N.po aQaﬂE:.m its ma_w.»”m_ Woww,w_oh
The weight with which a given nth eigenstate is _oom_ﬁ.omm on the :r. :HOM_oﬁo” is m_Mm E@Ma e“mmeM
m(i) = ¥, [ (ia|n) 1% they are :o.d:%u& by :..o condition 3, m, (i) = 1. In terms .
the localization length L, of the nth eigenmode is defined as [24,25,29]
2

o > (i 6.18
Ly=L(wa) =Y m(DrF = | > ma(Dr| (6.18)
i=l =1 .
This formula is actually a discrete function of its argument w,. One can obtain a mBMoMr _ﬁoo&_go:
fanction L(X) by averaging L(w,) over some m?w.: interval AX for an mzmaBEm of clusters

L) = (1K 4017 L)

T e bl ) nres o e v ah sl o
E:hom_mﬁ.\._wmaﬂw.?dmni the results ow m.mBE»mon.m for L(X) MQ. moo-wﬁmmmmm\wz mmww ipm_ m,.wmwrw MMN__HQ
The ot e s o e origind oo L) o v e

_Smnwﬁsmumﬁﬂw MMHQMM—MMM MMMMWMMWV oxE_u:Nm@Mw_.maam:%Ewn%—Mw, Mwwmhwmw_ “.MMM ﬂ._.H_.M Mn““%aﬂ”ﬂ% _M»M nMw
There are modes that are strongly locali and those d. B O o o
o e 10t i of 3 manbrce, Em_gmm_ﬁa@w of a_& cusers,
s soctionw ot he llowing Whi the E,am_ m%_wﬁwﬁww chaned
B e s, A D o absnee of o scaling may be eated t he fact it

(6.19)
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particles are .m=<o~<oa in the excitation, and scale invariance does =Aon Bwimmm“”mwﬁwam_w %MMHMMWM mMM
such .mEmz .&magoom. Another possible reason is due to symmetry properties of the &mﬁ:ﬁomw% As
our m_BEw:o.nm show, eigenmodes are strongly asymmetric in contrast to the assumption of Ref. H.wﬁ
of the mwrmn.om_. on average, symmetry of modes. Scaling in this case might occur F&&.&:w:
for modes with a certain degree of asymmetry (some effective “aspect ratio”) while the osﬁzwN
spectrum, formed from modes of different symmetries, may exhibit multifractal scaling. (Note that

multifractality of gi i H s . : ©
Ref :Hou._vw of giant electric field fluctuations in semiconductor films was considered recently in

6.3. Dipole interactions in silver nanocomposites: Numerical simulations and experimental data

Z~os we ow_o_.:mﬁo En own.ow_ cross section as a function of wavelength, A, for silver CCA. The
nO@mc “m: of our .mEE_wnonm .§= @a compared with experimental data for silver colloid aggregates.

ptic E.owna.am of N.amﬁw:_o particles and their aggregates were studied experimentally by a number
of :.u\womaormnm. in particular, by Kreibig and co-workers [111].

First, we specify the dependence of @ on A. An expression for the dipole polarizability of a

dielectric sphere of radius R,,, whi i iati i i
105, > Which takes into account the radiative reaction correction, has the form

@ = Nw €— €y
"e¥ 26, — (2D (kR (e —ep)’ (620)

sra_..m € =€ 4 ie” is the dielectric function of a monomer and ¢, is the dielectric constant of a host
medium, which we assume to be water. The dielectric constant of water is real and nearly const ow
=€, = .H.w.w, in the spectral range under consideration (from 200 nm to 1000 nm) Y s
The radiation correction introduced above results in the expression for a mmmm@? the optical
theorem and the energy conservation law. From Egs. (6.10), (6.15) and (6.21) we oEME i
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X=-R, _HH + |||I|_m el H“ . (6.22)

The dielectric function.in a metal is well described by the Drude formuia (cf. Eq. (2.1))

@} 6.23
TR ety (623)
where €, includes the contribution to the dielectric constant associated with interband transitions in
bulk material, @, is the plasma frequency and ¥ is the relaxation constant.

To simulate the silver colloid aggregates studied in our experiment, we used the CCA model
described in Section 3. CCA have fractal dimension, structure, and aggregation pattern very similar
to those observed in the experiment. This model contains two adjustable parameters, the lattice
period, a, which defines the relative distances, r;, between particles, and the radius of a monomer,
R,,. Clearly, solutions of the CDE are very sensitive to the ratio a/R,, because this parameter
determines the interaction strength. The model of geometrically touching spheres, which seems to
be the most natural, implies that a/R, = 2. However, as was shown in Ref. [112], this model
fails to describe the long-wavelength resonances observed in a group of particles; it also fails to
describe the long-wavelength tail observed in the absorption spectra of colloid aggregates (see, e.g.,
Refs. [100,111,104]).

The physical reason for the failure of this model is that the dipole approximation is not strictly
applicable for touching spheres [112-116]. Indeed, the dipole field produced by one of the touching
monomers is highly inhomogeneous (oc r=3) within the volume of the other one. This inhomogeneous
field should result in high-order multipole moments, coupled both to each other and to the incident
field. The high-order moments, when they are taken into account, effectively increase depolarization
factors, and lead to the low-frequency resonances observed in experiments [112]. However, incorpo-
rating these high-order moments into the calculation results in an essentially intractable problem: for
the large fractal clusters considered here.

As suggested by Purcell and .Pennypacker [117], and developed by Draine [103], a description
of the optical response of an arbitrary shaped object can be obtained, remaining within the dipole
approximation. (It is worth noting that the macroscopic Maxwell equations also contain only dipolar
terms, i.e. polarization.) Below we generalize these ideas for fractal aggregates.

To account for multipolar effects in the CDE, real touching spheres may be replaced by effective
spheres which geometrically intersect. Formally, this requires the ratio a/R,, to be taken less than
2. The physical reason underlying this procedure can be understood from the following arguments.
Consider a pair of touching spheres and ascribe to the first sphere a dipole moment d located at its
center. Since we would like to remain within the dipole approximation, the second sphere should
also be replaced by a point dipole located at a certain distance from the first sphere. Clearly, because
the field associated with the first sphere decreases non-linearly, ~ d/r’, the second dipole should
be placed somewhere closer than 2R, from the center of the first sphere (otherwise, the interaction
between the spheres would be underestimated). In other words, in order to correctly describe the
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interaction between the spheres remaining within the dipolar approximation, the distance between the
dipoles must be taken less than 2R,,. This is equivalent to replacing the original tonching spheres by
overlapping spheres with the dipole moments located at their centers.

To gain insight concerning selection of the ratio @/R,, we first consider cases for which a/R, is
known exactly. As shown in Refs. [103,117,1 18], the correct description of the optical response of a
small object of arbitrary shape was obtained by considering dipolar interactions of a set of spherical
monomers placed on a simple cubic lattice inside the volume of the object; the lattice period, g, was
chosen such that a® = (47/3) 3, This relation, which provides equality of the total volume of the
spheres and the original object under consideration, gives the ratio a/Ry = (4m/3)'? ~ 1.612. In
Ref. [119] it was shown that, within the dipole approximation, correct depolarization coefficients for
a linear array of spherical monomers are obtained provided a/R,, is chosen to be (443)13 ~ 1.688
({3 =X k%), Le. close to the above mentioned value. We used a/R,, = (47/3)'/? in our calculations.

We also require that the radius of gyration and the total mass of clusters used in simulations
must be the same as in the experiment. This condition, combined with a/R,, = (4a/3)1/?, can be
satisfied for fractals (D # 3) if one chooses R,, = Resp (7/6)P/3G=D)1 where R.., is the radius
of monomers used in experiments. In our experiments described below, the radius of silver particles
forming colloidal aggregates was R,,, ~ 7 nm, so that R, ~ 5 nm for D = 1.78.

For a light beam propagating in a system which contains randomly distributed clusters far away
from each other (so that the clusters do not interact), the intensity dependence is given by the
expression I(z) = I(0) exp(—o,sz), where s is the cluster density; s = p/[ (4w/ mvww%AZZ. where
p is the volume fraction filled by spherical particles. Introducing the extinction efficiency,

_ o) _4kdma
e W, "R, (©24

the intensity dependence 7(z) acquires the form
1(z) =1(0) exp[~3Q.p(2/Rexp) 1. (6.25)

As follows from (6.25) the extinction efficiency Q, is the quantity that is measured in experiments
on light transmission (rather than o).

In Fig. 16a and 16b we plot the frequency variable X and relaxation parameter & against wavelength
(see Eqgs. (6.21) and (6.22); @*/R% = 4m/3 was used; for optical constants of silver, the data of
Ref. [120] were used.) The A-dependence of X and & near 400 nm, and towards longer wavelengths,
are associated with collective surface plasmon resonances. As seen in Fig. 16a, X changes significantly
from 400 to 800 nm; hence, different dipole eigenmodes of a cluster can be excited by applied fields
at different A. In the wavelength region from 800 nm toward longer wavelength, X is almost constant
(X ~ Xo = —a’/R}, = —4m/3). This means that a change in A in this region does not change the
resonant dipole mode, which can be referred to as the “zero-frequency mode”, or more simply as
the “zero-mode”. (Note, however, that whereas X = const for A > 800 nm, the relaxation constant
d significantly decreases from 800 nm towards the longer wavelengths, leading to a decreased decay
parameter.) Since in the long-wavelength region the value of X (and, therefore, the mode excited)
does not change with A, the corresponding local field distribution in a cluster is also independent of
the wavelength.

The enhanced far-infrared absorption (see Section 3.2), generally attributed to clustering, can be
related to the excitation of the zero-mode of a cluster. Interactions between particles aggregated into
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Fig. 16. The spectral variable X (a) and decay constant & (b) versus wavelength for silver particles in vacuum and water.

a cluster lead to the formation of eigenmodes, including the zero-mode. The latter mode occurs MM
the long-wavelength part of the spectrum, where X(A) ~ Xo mo—.. all .>. $.Eo=..n5 cluster is oxo_ha :
by a low-frequency applied field, so that X(w)} ~ Xo, absorption is primarily due BoaNa_.M_..Mb_
excitation and is large because of its resonant orm_.moa._.. For non-aggregated, ia:anwE.wn p: Zc aww
the absorption spectrum is centered in the narrow region near the mmﬁﬂ X(Ao) lm (e.g., Ao lm 10
nm for silver particles in water); therefore, there are no n.mmon.umuonm in the long-wavel a—.@hr wmﬁ Mn
spectrum, where X(A) ~ X, and, therefore, the absorption is mb_._. Thus, the zero-mode formation,
which accompanies particle clustering, results in the enhanced .mﬂ._nmumaom mcmoacgﬁ.r ations of

Provided the dependences X = X(A) and & = 8(A) are specified, one can express m solu , :m&.
the CDE (expressed in terms of X and &; see Egs. (6.6)-(6.14)) as explicit ?:onouwa o 2»% ocmmwm.

In Fig. 17, we plot the extinction efficiency, Q., as a ?uoao.n. o%. A o&o&wm on : o.a asis
of the exact and quasi-static dipolar interaction [102]. .?m solution in the nzﬂm_..mgom “MM s
obtained by the Jacobi diagonalization method for mco.wm_do_m oEmﬁnm.. The so :ﬁ.o: o he CDB
with the exact dipolar interaction (6.2)-(6.4) was obtained by the o.o_czmﬁ.o m&m_gﬂ =MM_. o o
1000 particle clusters (for a control, Q. was also oﬁo&wx&. at two different ‘wavelength " 10000
particle clusters.) As seen in the figure, these solutions are in a .mooa agreement. >m. was sl ° i n.rm
Ref. [26], the quasi-static approximation is, under certain conditions, a m.oon m@EOEB»WOM_ mMMm e
description of dipolar excitations on fractals. H_.:m occurs cmomcmw B.Omn a_mgioaaw_ mm.mao“». ized I
areas smaller than the wavelength, A, and, wnaoM__aEmwS the Mozn._wmmmww_ MM the local fiel p

i that are comparable with or larger than A are of no i X ]

" Mmmma.hﬂmﬁ we also Emmni the scattering amm&go« Qs = (o) /[{N)7RZ, 1, ironM mrn mawﬁmmnmwm
cross section o, is given by o, = 0, — 0. (Cross moo.aon.m o, and o, ate .an@b.oa by (6. ‘vtmb AZonm
respectively.) As follows from the figure, the scattering is small so that in nﬂm oww,m n...n ~ Qﬁm& owe
that to obtain this and the next figure, the data o.m Ref. H._N:, rather than Wo. 2 M I8 Mcoﬁor 4 for
the optical constants of silver. These data are slightly different; however, this does not mu

the spectra presented in Figs. 17 and 18a.)




12 V.M. Shalaev/ Physics Reports 272 (1996) 61-137
0.6
Q. Qs -~ — q, Quasi-static solution (N=500
Q00 Q,, Exact solution (N=1,000)
7\ 00000 §;100, Exact solution (N=1,000)
\ \ &sasa@q,, Exact solution (N=10,000)
0.4 4
0.2
0.0, T T T
200 400 800 800 1000

Wavelength, nm

Fig. 17. Extinction efficiency Q. and scattering efficiency Q; versus wavelength. Q. is calculated in the quasi-static
approximiation for 500-particle CCA and on the basis of the exact dipolar interaction for 1000-particle and 10000-particle
CCA. Q; is calculated for 1000-particle CCA with the exact dipole interaction.

In Ref. [102] experiments were performed to measure extinction in silver colloid aggregates.
Fractal aggregates of silver colloid particles were produced from a silver sol generated by reducing
silver nitrate with sodium borohydride [106]. The color of fresh (non-aggregated) colloidal solution
is opaque yellow; the corresponding extinction spectrum (see Fig. 18a) peaks at 400 nm with the
halfwidth about 40 nm. Addition of adsorbent (fumaric acid) promoted aggregation, and fractal
colloid clusters formed. When adding the fumaric acid (0.1 cm® of 0.5 M aqueous solution) into the
colloids (2.0 cm®), the colloid’s color changed through dark orange and. violet to dark grey over 10
hours. Following aggregation, large wing in the long-wavelength part of the spectrum appeared in the
extinction, as seen from Fig. 18a.

The process of aggregation can be described as follows. A large number of initially isolated silver
nanoparticles execute random walks in the solution. Encounters with other nanoparticles result in
their sticking together, first to form small groups, which then aggregate into larger formations, and so
on. The CCA having fractal dimension D ~ 1.78 were eventually obtained. An electron micrograph
of a typical silver colloid aggregate is shown in Fig. 18b. : :

Experimental extinction spectra are compared with numerical simulations in Fig. 18a. The calcu-
lations were performed for 500-particle CCA (solid line with a large wing) and for 10000 particle
CCA (circles). For comparison, the measured and calculated spectra for non-aggregated monomers
are also presented in the figure. Clearly, the aggregation results in a large tail in the red and infra-red
part of the spectram, which is well described by the simulations. The discrepancy in the central
part of the spectrum probably occurs because, in the experiments, a number of particles remained
non-aggregated and led to additional (not related to fractal aggregates) absorption near 400 nm.

To conclude this subsection, we consider two experimental observations that support the theoretical
predictions of mode localization in fractals and frequency and polarization dependence of spatial
locations of the light-induced dipole modes. .

If the laser field creates hot spots in aggregates, then the corresponding parts of a cluster can
be damaged (or modified) by a sufficiently powerful laser beam. As a result, the absorption corre-
sponding to these parts will disappear, and there will be spectral holes left in the absorption for a
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was estimated in Ref. [123], the magnification factor was approximately 5; the actual size of the
high-local-field zones obtained in the experiment [123] was estimated to range between 50 nm and
200 nm, i.e. well beyond the wavelength limit.

7. Enhanced optical processes in small-particle composites

Non-linear electrical and optical properties of nanostructured composites have attracted much
attention in recent years HN_bwuwobubobco,shﬁu_ww_. Composite materials may have much larger
non-linear susceptibilities than those of ordinary bulk materials. The enhancement of the non-linear
optical response in composites is due to strong fluctuations of the local fields, and these fluctuations are
especially high in composites with fractal morphology [22,24,31,33,34]. Nanostructured composite
materials are potentially of great practical importance as media with intensity-dependent dielectric
functions and, in particular, as non-linear filters and optically bistable elements. A typical system
under consideration is a composite in which 2 non-linear material is embedded in a host medium
which can be linear or non-linear. The response of a non-linear composite can be tuned by controliing
the volume fraction and morphology of constituents.

Stroud and Hui [124], and Flytzanis et al. [125] considered the electromagnetic response of
non-linear particles randomly embedded in a linear host in the dilute limit (i.e. when the interaction
among the particles is small. Perturbation expansions that allow one to determine small corrective
terms for non-linear susceptibility were developed by Yu, Hui, Stroud and co-workers [126]. They also
considered the case where inclusions and host material may possess pon-linearities up to fifth order.

Sipe and Boyd studied non-linear susceptibilities of composites within the Maxwell-Garnet model
[127}. Hui and Stroud generalized the differential effective-medium approximation, which they de-
veloped previously to model the effective linear response of a fractal cluster (see Section 3) to treat
the effective non-linear response [128]. Their analysis showed that the clustering of particles can
result in an appreciable enhancement of the non-linear response per particle (relative to the totally
random case) only when the host is a better conductor than the non-linear inclusion. Yu came to a
similar conclusion by applying a multifractal analysis of the voltage distribution to a deterministic
fractal cluster embedded in the hierarchical lattice [129].

Strong enhancement of non-linear susceptibilities at zero frequency near a percolation threshold was
pointed out by Zhang and Stroud [130]. Critical behavior of non-linear composites near the percola-
tion threshold was also analyzed by Hui and by Yu and co-workers [131 1. Using the effective-medium
approximation (EMA) and numerical simulations on the basis of the transfer-matrix algorithm for
random networks, Zhang and Stroud have also obtained a strong enhancement of the cubic non-linear
susceptibility in a metal-insulator composite near surface-plasmon resonances {130]. Recently, Levy,
Bergman, and Stroud showed that an induced cubic non-linearity can be generated in a composite,
even though none of its components possess it intrinsically [132].

The aggregation of particles often results in clusters having a fractal morphology. Shalaev and co-
workers [23,30,33.99,100,133] studied non-linear optical properties of fractal aggregates and showed
that the aggregation of initially isolated particles into fractal clusters results in a huge enhancement of
the non-linear response within the spectral range of the collective dipolar resonances (e.g., surface-
plasmon resonances). The eigenmodes were obtained by diagonalizing the operator of the interaction
between the light-induced dipoles on particles forming the cluster. Giant fluctuations of the local fields
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responsible for enhancements in fractals were studied by Stockman and co-workers [31]. Many of
the dipolar eigenmodes are strongly localized in different regions of a cluster with random local
structure [24,29,123] (note that there are delocalized modes as well); this leads ultimately to strong
fluctuations of local fields in fractals. A strongly varying, patchwork-like field distribution occurs
because of the “hot zones” associated with the localized modes.

The prediction of a huge enhancement of optical non-linearities in fractal clusters [23] was
then confirmed experimentally [99,100] for the example of degenerate four-wave mixing (DFWM).
Aggregation of initially isolated silver particles into fractal clusters in this experiment led to a 105-fold
enhancement of the efficiency of the non-linear four-wave process.

Numerical simulations of the non-linear optical response in diluted fractal clusters were reported
in Ref. [30]. In the central part of the diluted cluster spectram, the non-linear optical response scales
as a function of the generalized frequency variable [301, whereas, in the wing, the response can be
well described by the binary approximation [23].

Below, following Ref. [133], we consider a number of enhanced optical processes in composite
materials consisting of original non-diluted aggregates of particles. The processes under consideration
include four-wave mixing (FWM), third harmonic generation (THG), Raman and Rayleigh scattering,
and non-linear refraction and absorption in Kerr media,

7.1. Local field enhancement

The enhancement of optical processes in small-particle composites occurs because local fields
exhibit strong fluctuations that significantly exceed the applied field. The local fields can be found
from linear optical response theory. We consider the response to electromagnetic waves at optical
frequencies by a system of N polarizable particles (monomers), with dipole-dipole coupling between
the particles. The monomers are positioned at the points r; ( i=1,..., N) and assumed to be much
smaller than the wavelength, A, of the incident wave.

For the sake of simplicity we also assume that A is much greater than the cluster gyration radius
R.. For fractal clusters, however, the main results presented below are qualitatively valid even if
R: > A. This is because most of the optical excitations in fractals are localized in sub-wavelength
areas [24,29,123] and the interaction of monomers at distances greater than A can be neglected. [26].

The local field E; acting on the ith monomer is expressed as (cf. Eq. (6.13))

m._. = h«ol~&..n = ch_anmm.Mwov- AQHV

where a;,p is the polarizability associated with the ith monomer in a cluster (cf. Eq. (5.29) and
(6.14))

s = 5 G S 12

We now discuss the enhancement of local fields in small-particle composites. The parameter
characterizing the enhancement of local field intensity can be defined as
G =(|E[")/|E®P. (7.3)

As was shown in Ref. [24], the enhancement G is related to Im a(X) as follows Anm.. Eq. (6.17)):
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Thus, in fractals there is always a strong interaction of a particle with others distributed in its
random neighborhood. As a result, there exist localized eigenmodes with distinct spatial orientations in
different parts of a cluster, where the location depends on the frequency and polarization characteristics
of the mode. As mentioned above, some of these modes are significantly shifted to the red part of the
spectrum where their quality factors g are much larger than that at X(@) =0, for a non-interacting
particle. Thus, the dipole-dipole interactions of constituent particles in a fractal cluster “generate” a
wide spectral range of resonant modes with enhanced quality factors and with spatial locations which
are very sensitive to the frequency and polarization of the applied field. The localization of modes
in various random parts of a cluster also brings about giant spatial fluctuations of the local fields,
when one moves from “hot” to “cold” zones corresponding to high and low field-intensity areas,
respectively.

In the case of a CPSP, the volume fraction, P, is not small. However, since the dipole-dipole
interaction for a three-dimensional CPSP is long range, one expects that eigenmodes are delocalized
over the whole sample so that all particles are involved in the excitation. Accordingly, fluctuations
(and enhancements) of local fields are much smaller than in a fractal aggregate where the modes are
localized.

As seen in Fig. 20, enhancements and fluctuations of local fields in non-fractal CPSP and RGP are
significantly less than those in the case of fractal CCA, in accordance with the above arguments.

The enhanced local fields result in enhancements of the optical processes considered below. Based
on the simulations presented above, one anticipates that in fractal composites, where the fluctua-

tions are strong, the enhancements can be very large. Below, we analyze various enhanced optical
phenomena in a composite materiat consisting of fractal CCA.

7.2. Four-wave mixing

Four-wave mixing (FWM) is determined by the non-linear polarizability [134,135]
BRs(~ws; 01, w1, ~w5), (71.5)

where @; = 2w; — @, is the generated frequency, and w, and w, are the frequencies of the applied
waves. Coherent anti-Stokes Raman scattering (CARS) is an example of FWM. In one elementary
CARS process, two w, photons are transformed into w, and @, photons. Another example is de-
generate FWM (DFWM); this process is used for optical phase conjugation (OPC) which results
in complete removal of optical aberrations [134]. In DFWM, all waves have the same frequency
(0; = @) = w,) differing only in their propagation directions (although, generally, the polarizations
are also different). In a typical OPC experiment, two oppositely directed pump beams, with field
amplitudes E) and E"", and a probe beam, with amplitude E® and propagating at a small angle
to the pump beams, result in a OPC beam propagating against the probe beam. Because of the
interaction geometry, the wave vectors satisfy the relation: k) + k| = ky + k, =0, Clearly, for the two
pairs of oppositely directed beams that have the same frequency w, the phase-matching conditions
are automatically fulfilled [134].

Below we consider the DFWM process where the total applied field is E® = E(" 4 gV | g®,
The polarizability 8, that results in DFWM, leads also to non-linear refraction and absorption
(to be considered below) and is associated, in general, with the Kerr optical non-linearity. For
coherent effects, including the ones discussed in this section, averaging is performed over a generated
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Er r (ie .a_m intercluster interaction is still unm:mmc_mv.. ,Ezw.m,& O e ey, The avecsgs
of] w\m_ :.5.5.8 of many clusters (each cluster may .nosw_ma of .u_m.H B easies within one
:.:_: e fraction p filled by particles obviously remains the same. mMMMcom e S gisgation
.<M =~Bn now strongly interact via light-induced dipolar fields. The m e S e o,
,MMM:M for example, in a silver colloid solution. In R.M_uﬂommmmm\ww E._.Mw ﬁw O Sorohydride
- i in solution), for example, by reducing ; dium borony e

mmWmeﬂ%Mﬂ:éa _Mm “ adsorbent (like phthalizine) vmoBOme aggregation, forming
H_ Smm with fractal dimension D ~ 1.78 Amw.a &mw m@.o:ou . vn, e tium can be expressed, in

oc,mrn orientation-averaged non-linear polarizability in an isotrop

general, through two independent scalar functions fs and f, as [134]

(7.6)
(BGs)o = filapys + falapror an
me& = Wﬁm%m.& + 8oyBps + 8508y} o
Agys = L{8upbys + BaryOps — 28,508y}

i + ~ are totally and
the sign (.. .)o denotes an average over orientations. ‘;.a terms f.4* and f,4~ are y
wher Mb am %Ba&o parts of Biy,s (over af and q&v,._.mmuoosé_w. ' tocel ok B rahec than
vmﬁgow w%nr_man consists of monomers, the mm.E wom_:m =w.cu M.M“ .wwwm o o A . Toking
i ), Also, the dipolar interaction of non-line
the applied field E™. 3

y eq ght-1nda
ations for th C

g

these Emﬂﬁuﬂﬁﬂm into account, we can write the following system of [xatio! (s} e light-i d ed

non-linear dipoles:

. (19)
ij JNL
A =3B 5 gBi By + @(@9) 3 Wapdi:
ia a . ¥ 7

where the pre: factor 3 n@@nOm@ﬂﬂ the de eneracy factor that gives the number of distinct @@:.—.——HEQOEM
S 8

i , w, and —o [134]. )
om_.mﬁwm ﬂwmmmwwm m“_mawmmo: P39 of an isotropic (on average

particles aggregated into clusters has the form [135]
pio (w) = AE©® ANBV . MASJ + wwmﬁov*:wev . NSJ

) composite material consisting of
(7.10)

where A and B, are given by o
-1
7, B=3(F.—2F)pu
- wﬁﬁ . iF i i f the cluster
lume of a particle, and F; and F, are totally and partially symmetnc parts o
i u > . -
mw__wawuﬂmm% BL5)s having the form similar to (7.6)—-(7.8), so that
By

A.mwuumwmv = m.hbu.ué + FoAspys-
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The factors F, and F, can be ex

follows [133) pressed in terms of the products of the linear polarizabilities as

3
Ammw.wmv = Fdly s+ F.47

apyd>
where o
F, = WNwN*\HAﬂlww&vﬂlbw&v +27r( éw..).ﬂm\dv
Fo= 422" fo(Tr(&a)Tr (8787 — Tr(aT @il ar))
;) (7.13)

where (87&;).5 = «; T a
%) ap = Xjaljorp, (B1E1) s = a;p. a* Al a;8% 6
fhere = a X )y8 = Qg g, and (B &;076%) .5 = o ; *
Mrmo% :w%m_%v&o_% zmw an:ﬂmm a transposition of Sm matrix 3.” %om“mwum to ﬂ%w%ﬁﬁ%&%m«&u
non-linear polarizability of an isol . ), is
! r on-line ated monom i
uﬂwmﬂﬂﬂ%mn_::?m wo_m:.wwc:@ of a cluster. The totally symmetric wM__..H Aommmw m“wwom.mwlﬁ.mv.v“ .
potartzabil Yy “generates” a 8.55 symmetric part of the cluster polarizability (F. e s
or the partially symmetrical parts (F, o< f,). Y (s 0 1); the same fs

The no: linear susceptibilit o(30) of a com osite material is defined via the relation
non-i1mn P y \ﬂ\nh.\m p
(3¢} lwlan . Svm.o m,o&
P AEV =2X, meA w, 0, w, 8vmm nA ) MH N
\ﬂ\%
where By can be Wxﬁﬂwmm& in terms of the non-linear ﬁomm:Nm.Uw— ~v~ averaged ove; ensemble o
A : v 1 8 T an ensemble of

+(3¢) . -
Xaprs(—@; 0, 0, —0) = pug (BS) (~w; 0, 0, ~w)). (7.14)

In particular, if 84 is due to the
In ) non-resonant electroni imi
fa=0[134,135]. Accordingly, we obtain in this omﬂw o response (the low-frequency {imi0), then

PRt (7.15)

Thus, the efficiency of four-wave mixi i
. -wave mixing (which is proportional to. th i
is enhanced due to the clustering of particles in a composite Bwanamcwﬂ”ﬁ“omnavraaa Fauared)

Qg "N«Jh hN"AkNIT%NV& & & A
= |F/f 255 X NI (&fa)Tr(alay) + 21v (el aalar)) . (7.16)

Thus, according to E

3 q. (7.16), the enhancement d i

s, according 7.16), d ue to the particle clusteri i

th QWB W@o HMM :ﬂnﬂn wOHmDNmE_Emm a; (averaged over an ensemble of o_:mﬁ.“‘wvm. MMM o unwnmm..w@:,:»
> represent the ratio of the corresponding local fields and the applied mnma AMM Wﬂmﬂwww__v:_mm,

It was conjectured in Ref,
o . [133] that the enhancement factor (7.16) can be approximated by the

X2 4 82
Grt = Crng wm Y lim (0], G
17)

FWM 1 -

where the pre. factor C should be considered as an WQ_E able ete; penden
stabl parameter. The X- and 8-de endence

h—@&-ﬁnoa _Uw mﬂ 7.17 can be obtained m.—uw—cﬂowmmw @w assuming that the resonant modes give a
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Fig. 21. The enhancement of degenerate or nearly-degenerate four-wave mixing in CCA, Grwy, for diluted CCA (X < 0).
The simulations were performed with 8 = 0.005. Units in which Rp = 1 were used. Taken from Ref. [30].

Fig. 22. The enbancement of degenerate four-wave mixing, Grwa. for original, non-diluted, CCA. Units in which a = 1

were used.

dominant contribution to the enhancement. For diluted clusters, when the scaling is well pronounced
(see Section 5) the dependence (7 .17) can be also obtained from the scaling arguments [30].

The results of the numerical simulations of Gy for diluted (Fig. 21) and non-diluted (Fig. 22)
cluster-cluster aggregates (DCCA and CCA, respectively) are shown above. In both cases the results
are shown for X < O that correspond to the red shift with respect to the resonance of an isolated
monomer X = 0 (the results for X > 0 are similar). The simulations were performed based on the
general formulas (7.2) and (7.16). The solid line in Fig. 22 describes the results of calculations
with the use of formula (7.17), where Cryy Was found from the requirement that Grwn®® =1 at its
maxima, X &~ £4. The dashed line in Fig. 22 represents a power-law fit for the results of numerical
simulations for 0.1 < |X| € 3 and & = 0.05. (Note that different units were used for DCCA and
CCA, Ry =1 and a = 1, respectively.)

In both cases the X-dependence is well reproduced by X8[Ima(X)]? Recall that for DCCA,

Ima oc |X|%! with d, = 0.3 0.1 (see Section 5) so that Gpyy o |X|*+** [30]. For non-diluted
CCA, the dependence associated with Im a (see Big. 10) is weak in comparison with the factor X%,

As follows from Figs. 21 and 22, the enhancement increases strongly towards larger values of 1X].
This occurs because the local fields become stronger for larger values of |X|. (As seen in Fig. 20, the
local field intensities increase towards the long-wavelength part of the spectrum, which corresponds
to larger |X| for X < 0.) )

We also conclude from Figs. 21 and 22 that the enhancement, in accordance with Eq. (7.17), is
proportional to the sixth power of the resonance quality factor: Grymy ¢* (g ~ 671) and reaches
huge values in the maxima occurring at X ~ +4.
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Fig. 23. (a) DFWM efficiency vs pump intensity for silver particles which are isolated (1) and aggregated into fractal
clusters (2) (A =532 nm); (b) DFWM signal vs the time delay of one of the pumps (A = 540 nm; pulse duration = 30
ps). Taken from Ref. [100].

A million-fold enhancement of DFWM due to the clustering of initially isolated silver patticles in
colloidal solution was experimentally obtained [99,100]. In Fig. 23a we plot the experimental data
for conversion efficiency 7 = I/ o< I (I, 1) and I, are the intensities of the DFWM signal, probe
beam, and pump beam, respectively). As seen in the figure, similar values of 7 can be obtained in
silver particles aggregated into fractal clusters at pump intensities ~ 10° times less than in the case of
non-aggregated, isolated, particles. Since 7 o 13, we conclude that the enhancement factor for silver
fractal composites is G ~ 10, As follows from Fig. 16, the value of X and & at the laser wavelength,
A =532 nm, are X ~ —2.55 and & ~ 0.05, respectively. According to Fig. 22, Grwar ~ 10 for these
values of X and &, in agreement with the experimental observations.

The value obtained in Ref. [100] for the non-linear susceptibility in silver fractal composites is
¥09 ~ p x 1075 esn. at A = 532 nm. Even for a very small metal fraction used in the experiment
of Ref. [100], p ~ 1075, this gives 779 ~ 10~ e.gq, (cf. a typical value of ¥ in crystals is
~ 107 e.s.u.). Moreover, p is a variable quantity and can be increased. We can assigned the value
1073 e.s.u. to the non-linear susceptibility, ¥, of silver fractal clusters; the quantity Y is related
to the non-linear susceptibility, $©9, of the composite (silver aggregates in water) via the relation
F090 =p x y¥,

Rapid non-linear response of silver CCA was tested in the OPC scheme when one of the input
pulses was delayed by moving the mirror that reflected the input beam back to the sample. As follows
from Fig. 23b, the DFWM signal is twice decreased with the time delay 7, increasing up to 30 ps,
which coincides with the pulse duration (pulse duration of the used laser, 30 ps, did not allow one
to measure shorter non-linear responses). Hence, the relaxation time of the non-linear response does
not exceed 30 ps. The huge non-linearity, Y ~ 105 e.s.u., with a time of the non-linear response
< 30 ps [100], makes metal fractal aggregates very interesting for potential applications.

In the long-wavelength range of the spectrum, A > 1000 nm, the quantity X is almost constant:
X(A) =~ X,, where a3X, = —4m/3 (ie. X = —47/3 in @ = 1 units). The excitation in this spectral
region, when X(A) = X, for all A, can be described in terms of the single mode, called “zero-mode”
(see Section 6.3). In this case, all the spectral dependence for Gy, is due to a A-dependence of
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7?9 « 672 in the long-
=5 j i 7%0y/ B2, we conclude that ¥ o
tor 5~ in (7.17). Since Grym ~ ¥ 00 : t Jone-
wwwmawﬁ_. part oM. the spectrum. For the Drude model, § < A :w wEo infrared part of the spec!
thus, 79 strongly increases towards the longer wavelengths, oc A°.

7.3. Enhanced harmonic generation

. . . . . W
We consider now harmonic generation, beginning with third harmonic ma:MB:w: “ﬂmv.oanon
assume that the phase-matching condition is fulfilled. ,H,rw THG process is due to
non-linearity. The corresponding non-linear dipole moment is -
d; L= wamm.. mmm..xm._..m. . .
- * | . . aqe ”o
For isotropic media, the orientation-averaged non-linear polarizability may be expressed in terms o
one independent constant [135] o)
(BD5(—30; 0, 0, @))o= fAlpys: . 2
i = i ide the cluster band of resonant m
the generated signal w; = 3w lies outsi clus .
¢<M mﬂwnwmwwaﬂmuﬂaﬁooﬁm the ‘interaction om non-linear dipoles oscillating at the frequency w; (cf.
and, s
Egs. (7.9) and (7.19)). )
nﬂzm\ polarizability of a small-particle aggregate has the form [133]

Ahwwwmv =F. bwm&x

where

(7.20)

(7.21)

= LZ° f(Tr(&) Tr(&l &) + 2Tr (28] &)).
. . . sability of an
Note that the cluster polarizability, Amm:&uv, is totally mwﬂnﬁﬁo as well as the; polarizability
) Yo either is characterized by a single amplitude.

i > & . . . - 2 . .Nu .
Hmomﬁr@MbMoB:M-ﬁoMm Mmow%m&-_.wn:oio generation process is given by Gmg = |(F/f)[%. Cmim 7 v

this results in Q. N
e = Y py ayTr(atan + 2T (aaTan) P | .
T 225 .
i des, a; ~ ap and Grge = 1.
itation outside the cluster band of resonant modes, & ; L .
mo_.mmro Nowohﬁwwmuw_om plot of Gryg as a function of negative X is E.mmmq.non for En8_<mw %h”nmmw
<&H___~mm _om»” & (the resuits for X > O are similar). Despite the mﬂd:%: mzon._._»mosﬂmmmm.wﬁmohm _m e nrno&“
8. Thus, in con
the product Grygé* does not ..._auon..n_ on &. X T : : 4
ww uﬁwww.\mwow,ﬂ”“mwa Mmaw: enhancement for the highest-order rE,BMM_wn generation, the presen
Rmsmm demonstrate a possibility of a very strong ma_._mzoaagn Grag < ﬁ factor within a band of
Based on the simulations, the following expression for the enhancement fa ,
the eigenmodes was suggested in Ref. [133]:

(X2 4+ 8)°

Gmic = Crye 5

723
[Ima(X)1?%, (7.23)

1 f; . i bl . .
where the pre actor 0:& 1s an & .—ﬂmﬁ&. © @mhgﬂ.—@ﬂﬂn. Formula A‘va AOQOOH? n muw.:_.nﬁmpﬁ the
indicated QOU endence Q:Mw ox 874 As follows from mﬂ ATNWVu the resultant enhancement can be
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Fig. 24. The enhancement of the third-harmonic generation in CCA, Gy, for negative X.

MMWHMMA qsww vnwm Nomwmmmw param eter X raised to some power and the linear absorption Im a(X)

. Eq. (7. . ition, i i i

o T 1om, it contains a high power of the quality factor (4® for the DFWM and
The solid line in Fig. 24 represents the resuits cal

¢ . t t culated from Eq. (7.23) with Crgs found

M,.m relation Gryd® = 0.1 at its maximum (at X ~ —4). The dashed line in Fig. 24 an " Jo_,:
t for 0.1 < |X| < 3 and 6 = 0.05. . poweriaw
In general, enhancement of nth harmonic generation may be estimated by

Goune ~ ‘Aﬁmmﬂ_av :

The estimate (7.24) is based on the assumption that the interaction of non-linear dipoles oscillating

at the frequency w, = nw can be ignored. If this i ion i ; N
should be replaced hv . g . is Interaction is of importance, the estimate (7.24)

~ ~2n |12
Jool I (af) . 728

Gt ~ lato(@) | ™]ao (@) | (e (@) ar(w,)) 2. (7.25)

Experimental observation of second harmonic i
. c generation that was enhanced (by th;
magnitude) because of the clustering of silver colloidal particles was reported in AWMW mnmumwaoa of

7.4. Enhanced Raman scattering

In this section we consider the enhancement of Raman i
) 1 h scattering, Ggs, in parti
waﬁoa&:ma_.m. In Ref. [28] the simulations of the enhancement of me.mn Momnmw%:m _MMM NMMNWM“
or diluted o_cmané_z.mﬁ_. aggregates. Below we consider Gz for original (non-diluted) CCA and
ooﬂ\vﬁo the resuits with the experimental observations [133] .
e assume that each monomer of a cluster, apart i izabili

that ea 1 , apart from the linear polarizability o
WMA»BB_ mw_wanE:Q L. .Hu:m means that the exciting field E‘”, applied to w:w »mmmww“mm.mmwﬂ_ww
induces a dipole moment d° oscillating with the Stokes-shifted frequency w,. To avoid ::mmmoum.&,
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complications, we suppose { to be a scalar; this gives d* = /E. The Raman polarizability may either
be due to the polarizability of a monomer itself or to an impurity bound to the monomer.

We consider spontaneous Raman scattering, which is an incoherent optical process. This means
that the Raman polarizabilities ¢; corresponding to different monomers possess uncorrelated random

phases:

(&ri) =418y,
This feature constitutes the principal distinction between { and the linear polarizability . It ensures
that there exists no interference of the Stokes waves generated by different monomers.

As was pointed out above, when the monomers are the constituents of a cluster, the field acting upon

an ith monomer is the local field E; rather than the m.xnoE& field E®. Also, the dipole interaction
of the monomers at the Stokes-shifted frequency w; should be included. Taking these arguments into

account, we can write the following system of equations:

&, = LB + ) y_(ia|W|jB)djs
I

(7.26)

(7.27)

where a is the linear polarizability of an isolated monomer at the Stokes-shifted frequency w;.
The total Stokes dipole moment D¥, found by solving Eq. (7.27), is [28]

Di="d;, =ZZ Y (i puina R (7.28)
m .\.

where Z; = (a)~, af = a;(X;), and a; are defined in (7.2).
The RS enhancement associated with particle clustering is defined as [28]

2
(D% (7.29)
NIZPE©P
The above formulas (7.27)—(7.29) are exact and valid for any cluster. If the Stokes shift is so large
that the Raman-scattered light is well out of the absorption band of the cluster, the polarizability o]
in (7.28) and (7.29) can be approximated as Qg ™ Z;'8,p, and the enhancement (7.29) acquires
the following form after averaging over orientations [28]: .

Ggs =

Grs = _N_Nw_ﬂ MU_R.&_N_ =8(1+X/8) Ima. (7.30)

Thus, if the Raman-scattered light does not interact with the cluster, the Raman scattering intensity
is simply proportional to the mean square of the local fields (see Eq. (7.4)) [28].

However, in more interesting cases, the Stokes shift is small, and the Stokes amplitudes are. also
enhanced. Then, the general expression (7.29) is needed; after averaging over orientations, this gives

(X +8%)?
3

(For the non-resonant case, |X] > |wa|
According to (7.31), the enhancement of Raman scattering is determine
raised to the fourth power and averaged over an ensemble of clusters

(7.31)

Grs = (Trl Am«w?mw;w:v.

, we have @; = oy and, therefore, Ggs = 1 in Eq. (7.31).)
d by the enhanced local fields
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Fig. 25. The enhancement of Raman scattering in CCA, Gis, for negative X.

Fig. 26. Theoretical and experimental enhancement factors for silver colloid aggregates as functions of wavelength, A

Ej* _
Gprs ~ _.Wimo_% ~ lag (|, (7.32)

We conjecture the following formula for Ggg [133]:

212
Gis nﬁﬁﬁiﬁ? (X)), (7.33)
with ﬁwa being an adjustable parameter. The X- and 8-dependence as in Eq. (7.33) can be obtained b
assuming that resonant modes in (7.31) give the dominant contribution [133]. For diluted aggre; wﬂmw

the mon.sﬁm (7.33) can be derived from scaling arguments [28]. : ®
In Fig. 25 the results of simulations of Gpgs, defined in (7.31), are shown for negative X (the
results for positive X are similar). The solid line in Fig. 25 gives the enhancement found from
(7.33) with Cgs obtained from the relation Ggs6® = 3 at the maxima X ~ —4. The dashed line
represents a power-law fit for the results of the simulations of Ggs8® with & = 0.05 in the interval
mnw MQ_N_ < 3. ,H.:M& mxw.owma ocm&:& (4.07 £ 0.70) is close to 4. As was indicated above, the
endence associated with a pre-factor (in thi 4 i '
et from e, p or (in this case, X*) dominates the weak spectral dependence
As seen in Fig. 25, the product Ggs&®, on average, does not depend on & in the region close to
the maxima, and its value there is close to unity. Thus, the strong enhancement of Raman scatterin
Ggs ZML. can be obtained due to aggregation of particles into-fractal clusters. ®
In Fig. 26, mx.@mmaozs._ RS enhancement data, obtained for silver colloid solution in Ref. [137]
are compared with Ggs calculated using Eq. (7.31). (The values of X and & for various A were ?EL
using 5.0 data of Ref. [120]; see Fig. 16.) Only the spectral dependence of Ggg is informative in this
figure since only relative values of Ggs are reported in Ref. [137]. The experimental data presented
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in Fig. 26 are normalized by setting Ggs = 3 x 10~* at 570 nm, which is a reasonable value. Clearly,
the present theory successfully explains the giant enhancement accompanying aggregation and the
observed -increase of Ggs towards the red part of the spectrum. The strong enhancement towards
the red occurs because the local fields associated with collective dipolar modes in a CCA become
significantly larger in this part of the spectrum (see Fig. 20).

7.5. Non-linear refraction and absorption

In this section we consider the enhancement of the optical Kerr non-linearity. The Kerr polariz-
ability has, in general, the form mwwwmﬁleus.s. —w), and it determines the non-linear correction
(proportional to the field intensity) to the refractive index and absorption. The Kerr-type non-linearity
can also result in degenerate four-wave mixing (DFWM) considered above. Composite materials with
large values of the Kerr non-linearity can be used as non-linear optical filters. Under certain condi-

tions, they also manifest optical bistability [132] which can be utilized to build an optical analog of

.the electric transistor. Therefore, there is significant interest in developing materials with a large Kerr

non-linearity.

We consider the enhancement of the Kerr susceptibility due to the clustering of small particles
embedded in a linear host material. We assume that the volume fraction, p, filled by particles is
small, and that they are initially randomly distributed in the host. Since p is small, the interaction
between particles before aggregation is negligible. The aggregation results in many well-separated
random clusters. The interactions between the light-induced dipoles on particles in a cluster lead to
the formation of collective eigenmodes; their resonant excitation results in high local fields and the
enhanced Kerr susceptibility.

The Kerr non-linear polarizability, 8, has the same structure (see Eq. (7.5)) as the one describing
DFWM. (In the present case, however, we assume that there is only one applied field, E©®)) Although
in Section 6.1 we considered only one specific process, DFWM, the analysis presented there was
general and most of the obtained results are applicable to other phenomena associated with the Kerr.
susceptibility. )

For isotropic media, the Kerr polarizability can be written in the form (7.6), with two independent
constants, f and f,. The polarization of the clusterized composite is

PO () = u».\.mw“%len ©,o, |Ehvsm%emws,.

The effective Kerr susceptibility, 79, of the composite has the form

XS5 = Grspbsdip,s + CraPbalipys: (734)
where @4 = vy fs.00 With vg being the volume of a particle, and

Grs = £Z°Z*(Tr (81 6)Tr(87a}) + 2T (&1 &:6[ &), (735)
and

G, = sZ°Z*(Tr (67 &) Tr(&] &) — E&&&m&v. (7.36)

The factors G, and G, are identical to F,/f, and F,/f., respectively (see Egs. (7.13)), and the
enhancement for the DFWM process can be expressed in terms of G as Grwy = |Grs 2.
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Fig. 27. The enhancement of the Kerr optical susceptibility in CCA: (a) the real part Gy and (b) the imaginary part G,

In general, according to Eqgs. (7.34)~(7.36), there are two different enhancement coefficients for
totally symmetric (o< 4,5) and partially symmetric (x 4.5,5) parts of the susceptibility in an
isotropic system. The fact that there are two different independent constants for the Kerr response in
an isotropic medium results, in particular, in a rotation of the polarization ellipse [134].) If the field
E is polarized linearly or circularly, the non-linear polarization P9 can be expressed in terms of
only one independent constant [134] (F, and [F, + F,], respectively). Also, in the low-frequency
Limit (where 8 is due to the non-resonant electron response), the non-linear susceptibility tensor
must be fully symmetrical, i.e. F, =0, for an arbitrary light polarization [134].

Below we consider the enhancement associated with Gk = Gy. The enbancement factor is, in
general, complex: Gx = Gy + iGy. If B is real, the real part, Gy, and the imaginary part, GJ,
determine the enhancement for the non-linear refraction and for the non-linear correction to absorption,
respectively. : e .

In accordance with Eq. (7.17), we assume:that G} is larger than G% and can be approximated by

x* . .
Gy =~ Oawués a(X). ) (7.37)

In Fig. 27, a plot of G} (a) and G} (b) is presented for X < 0 (the results of the simulations
for X > 0 are similar to those for X < 0) calculated from Eg. (7.35). The solid line in Fig. 27a
tepresents the calculations based on Eq. (7.37) with the Cy chosen to satisfy the relation 1Gx8*| =1
in its maximum at X ~ —4. From the figure we conclude that Eq. (7.37) approximates the exact
results reasonably well. Also, both real and imaginary parts of the enhancement are approximately
proportional to the third power of the quality factor, g° ~ 573, and the following estimates are valid
in the maxima: G¢&® ~ 1 and Gj6* ~ 1. (Actually, G is several times larger than ¢, in accordance
with the assumption made above.) For metal particles, in particular, the decay parameter varies from
6 = 0.01 to 8 = 0.1 in the infrared and visible parts of the spectrum; accordingly, the enhancement
associated with the clustering of particles. ranges from |Gx| ~ 10° to |Gx| ~ 10° in this spectral
range. Such a giant enhancement indicates that optical materials based on composites consisting
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of small-particle clusters possess a high potential for <w5.o=m applications gmon_ on Ea _E.mn. Nnm
optical susceptibility. For G < 0, the non-linear correction 4n to the 3@.»220 index is negative,

B9 >0, and positive, if 42 < 0 (leading, Tespectively, to mm_m..ammoo:m_:m E.a self-focusing o»” the
light beam). Interestingly, the imaginary part, G, ormu.mom its sign as a Mcsnaoz of M %@J., rapidly.
Thus, a non-linear correction to the absorption coefficient .Am_sw: by Gx .mo_. real B09) is a very
strong function of the laser frequency and can be both vo.m_E.a and negative. The fact that a non-
linear contribution to the absorption can have a different sign is =o.ﬁ surprising: n:.wﬂw are :o:;EwE.
optical processes (associated with the Kerr-type non-linearity) leading to both vOm_me and =omwnnwm
non-linear contributions to absorption. In particular, processes mno.r as the meBnou— effect or the
Rayleigh resonance (stimulated Rayleigh mownmazmv. lead 8. n.amwcé Q.E.mo:o:m to the %MGH.SMM
whereas two-photon absorption, for example, results in a positive correction :“.r.:‘ Clearly, the ig

excites simultaneously many resonant modes in a cluster leading 8. a competition co:wog various
contributions associated with different resonant optical processes; this probably results in the strong

dependence of G on X.

7.6. Enhanced Rayleigh scattering and Anderson light localization

Resonant Rayleigh scattering by fractal clusters was studied by Shalaev et al. [26]. They showed
that the scattering cross section of small-particle aggregates has the form [26]

0. = TTRN(R(TH @6 ) + Kallr T &), (7.38)
7 2 2\ . .
- _ £(D<2);
C(kRo) UANIb #|w+oluv, if(D<2)
K; = 4 1(kRo) ™ In ((kRo)*), if (D =2); (739
7 D —2 ppi=Df2 if (D> 2).
T D (kry)-2Nt-2P, i
2D 2 k&) : .
i 6 . :
- _ , i (D<2)
C (kRo) quac Tw+o|bv if ( )
Ky = { L(kRo) 7 In ((kRoY?N), if (D =2); (740
1 D —2 A71—-2/D if(D>2
-2 NP, if (D >2)
NUINQ«?V

- - i Gamma function.
where C = DI'(D — 1)2!"Pcos (D —2) and I'(...) is the . ) )
The scattering enhancement mwowon Fy, is defined as F = o,/ No'®, where o(® is the single-particle
scattering cross section, o{® = 27k#|ao|?. From (7.38) we have

Fr = 5o 2K (Tr (@6 ) + Ko(Tr &Tr &), (741)

In the limit of non-resonant scaftering Eq. (7.41) reduces to the result obtained first by Berry and

ival [138], Fr = 3 (K +3K2). ]
m.mmm_«mm mmrosw: :w qum [26] that the enhancement for diluted fractal clusters can be estimated as
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N
Fpe~ Mwwﬁxw_k_vstv (7.42)

for small clusters (kR, < 1), and as
(KRo) P

e~ e (RIXD™ (D <2); (743)
0
-2 ’
F~ ;mmw In((kRo)’N) (RIX)*H, (D =2); (7.44)
-2
Fo~ RN Rx e, - (D> 2), (7.45)
Ry

for large aggregates (kR, > 1). Here d, is the optical spectral dimension (see Eq. (5.37) and
the accompanying discussion). Thus, according to Eqgs. (7.42)-(7.45), the scattering cross section
per particle is enhanced by coherence due to the fractality (factor (kR;)~? in Eq. (7.43) and
factor (kRo)~2N'-%? in Eq. (7.45)) and, in addition, by the resonance character of the scattering
by dipolar eigenmodes in fractal clusters (factor 8-!). Formulas (7.42)-(7.45) are supported by
numerical simulations of Ref. [26]. We mention that Rayleigh scattering by colloidal gold was
studied experimentally in Ref. [139]. ‘ :

To conclude this section we briefly consider the possibility of observation of light localization in
fractals suggested in Ref. [140]. (For other papers and references on light localization in various
media see, for example, Refs. [141-148]; multiple and cooperative scattering was also considered in
Refs. [149,150].) Light localization is an effect that arises entirely from coherent multiple scattering
and interference when the radiation elastic mean-free path / reduces to the wavelength A. This effect
is similar to Anderson localization of electrons in disordered solids [151]. Achieving the condition
I ~ A needed for observation of localized light modes is experimentally rather difficult since usually
I > A. Small-particle fractal composites are thought to be promising media for light localization
because of the strong enhancement of the light scattering in these objects [26,140].

To observe the light localization, we suggested [140] to use a mixture of small-particle fractal
aggregates with the intercluster distance of the order of the cluster size R, (“fractal gel”). The elastic
mean-free path in this case is | ~ (o,n,)7! ~ R}/o,, where n, is the concentration of clusters
(aggregates) and o, is given in Eqs. (7.38)~(7.40). As shown in Ref. [140], the requirement [ ~ A
can be fulfilled in the fractal gel under reasonable conditions, whereas the absorption remains small,
In the vicinity of the mobility edge, anomalous behavior for the light transmission and absorption
was predicted in Ref, [140]. .

7.7. Discussion

As shown above, the clustering of small particles embedded in a host material may result in
a giant enhancement of both linear (e.g., Rayleigh and Raman scattering) and' non-linear (four-
wave mixing, harmonic generation, and non-linear refraction and absorption) optical effects. The
enhancement occurs because of strongly fluctuating local fields that can have very large values
in particle aggregates (see Fig. 20). Non-linearities emphasize these fluctuations, leading to giant
enhancements.
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If particles aggregate into fractal clusters, mnoE»mo.:m of the local fields are especially large
(see Fig. 20). This is because the dipole interactions in fractals are :E long range (as Eow are
in conventional three-dimensional media) and many of the oo_._oﬁ:\.o eigenmodes are localized in
different parts of a cluster with various random structures. ,:_._m ultimately leads to strong spatial
fluctuations of the fields. In contrast, in compact ﬁraom.&in.sm_onw_.&_umnﬂ.w of particles, the _Q..w.
range dipolar interaction involves all particles into the excitation of eigenmodes, thereby suppressing

i ee Fig. 20). ) )
QMMM.M%H-_MMMH M_m_ waﬁm.vwnwo_m clusters can be ==amnm~oo.a and nocmr._w omsn_w."mn using the mows_w»m
simple arguments. Consider the enhancement for an arbitrary non-linear optical process o< E". mw
discussed above, for the resonant dipolar eigenmodes on fractals, local fields, E;, exceed the ax.ag ,
field, E®, by the factor ~ |ap/8| = |X + i8]/, ie. ~ _N_\m for |X| >> 8. However, the fraction o
the monomers involved in the resonant optical excitation is small, ~ SIma(X).

For a non-linear optical process, o |E| |, one can ammu.nmma the ensemble average of the a:ﬁw:ooﬁﬂur
(|E,/E®|"), as the resonant value, |E;/E®|L,,, multiplied by the fraction of the resonant mEo ﬁmm
(in other words, the fraction of particles involved in the resonant excitation). This gives for the
enhancement the following estimate:

(IE/EOL) ~ X187 x 8Ima(X) ~ [X['8' " Im a(X), (7.46)

which is > 1 for n > 1. Since this is only a rough estimation, an adjustable constant, C, should in
eneral be added as a pre-factor. : ) ) . )
m The non-linear dipole amplitude can be enhanced along with the ~w=§ local na_am provided the
generated frequency lies within the spectral region of the cluster Qwo—dion_om. For oa._wbn.oimam
of incoherent processes, such as Raman scattering and non-linear refraction and absorption in Kerr
media, we obtain from Eq. (7.46): G ~ X486 ma(X) (cf. m@m.. (7.33) and (7.37)). For coher-
ent processes, the resultant enhancement ~ [{|E/E®}")|?%; accordingly, the msumboamwa factor ~
CX86~*[Im a(X)]? for the third harmonic generation (cf. Eq. (7.23)), EE.Z CX38-5{Ima(X)]
for degenerate four-wave mixing (cf. Eq. (7.17)). (The latter oarB..nma.ﬁE is larger because of the
“additional” enhancement of the generated non-linear amplitudes oscillating at the same frequency as
the applied field.) ] )
M.rw\wn are other optical phenomena (not considered here) that can be also enhanced in small-particle
composites. For example, fluorescence (from molecules adsorbed on a small-particle mmm%mwﬁmv
following the two-photon absorption by the aggregate is enhanced by the factor Gr ~ {|E;/E®}*) ~
Jao| ~*{jeeil) oc 672

8. Concluding remarks

i er we have presented some recent advances in the electromagnetics of mE%..vwEo_o
oo”@%%o%»ﬂ:o wEwrmmmmmsmm on theoretical %_un.omowom.ga are o:.:gnw used EE., _ow@@o_m:%” on
those which have been recently employed to describe optical E.ownn.:nm of small-particle wmwnwww.mm.

As is well known, there is only one dipolar mode that can be excited by m.roBﬁmonmo__m: eld in w
spheiical particle (in a spheroid there are three dipole modes). .mﬁ a three-dimensional nm ection om
small particles, such as the random close-packed sphere of particles Ao.mmwv and the ran oBH gas o
particles (RGP), the absorption spectra are still peaked near the relatively narrow surface plasmon
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resonance of the individual particles, ie. all eigenmodes of the collection of particles are located in
a small spectral interval.

In contrast to conventional three-dimensional systems, the dipolar interaction in low-dimensional
fractals is not long range, which results in localization of the corresponding eigenmodes at various
random locations in the cluster. These modes form the optical spectrum of fractal aggregates which
is characterized by strong inhomogeneous broadening. It is important to note that, despite the asymp-
totically zero density of particles in a fractal cluster, there is always a high probability of finding a
number of particles in close proximity to any given one (g o r?3, ie. g becomes large at small r).
Therefore, there are strong interactions between neighboring particles, which lead to the formation
of eigenmodes covering a broad spectral range. The large variety of different local configurations
in a fractal cluster leads to the wide spectral interval covered by the eigenmodes. We emphasize
that this behavior is different from non-fractal composites (such as RGP and CPSP) where dipolar
eigenmodes typically occupy a narrow spectral interval. Thus, in objects with fractal morphology, the
density-density correlation, g(r) oc r°~4, results in an unusual combination of properties: whereas the
volume fraction filled by particles in a fractal is very small (as in gases), there are strong interactions
between neighboring particles (as in crystals).

Localization of eigenmodes in fractals leads to a patchwork-like distribution of local fields asso-
ciated with “hot” and “cold” zones in fractals. This brings about large spatial fluctuations of local
fields in fractal composites and huge enhancement of various optical effects.

In fractals formed, for example, by metal particles, the dipole eigenmodes cover the visible and
infra-red parts of the spectrum; the mode guality-factors increase with the wavelength, i.e. the local
fields are especially large in the long-wavelength part of the spectrum. High local fields result
in giant enhancements of a number of optical processes in small-particle composites. This makes
nanostructured composite materials, and, especially, those with fractal morphology, very attractive for
many potential applications.

Note that a microscopically rough surface often has a fractal or self-affine structure (e.g., a thin film
deposited on a cold substrate) [152-156]. Electromagnetic properties of rough surfaces were studied
in a number of papers (see e.g. Refs. [ 157-169]. Optical excitations of a rough surface can also result
in high local fields and large enhancement of many optical processes (see e.g. Refs. [170,171]).
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